Abstract
Large amounts of data have become an essential requirement in the development of modern computer vision algorithms, e.g. the training of neural networks. Due to data protection laws, overflight permissions for UAVs or expensive equipment, data collection is often a costly and time-consuming task. Especially, if the ground truth is generated by manually annotating the collected data. By means of synthetic data generation, large amounts of image- and metadata can be extracted directly from a virtual scene, which in turn can be customized to meet the specific needs of the algorithm or the use-case. Furthermore, the use of virtual objects avoids problems that might arise due to data protection issues and does not require the use of expensive sensors. In this work we propose a framework for synthetic test data generation utilizing the Unreal Engine. The Unreal Engine provides a simulation environment that allows one to simulate complex situations in a virtual world, such as data acquisition with UAVs or autonomous diving. However, our process is agnostic to the computer vision task for which the data is generated and, thus, can be used to create generic datasets. We evaluate our framework by generating synthetic test data, with which a CNN for object detection as well as a V-SLAM algorithm are trained and evaluated. The evaluation shows that our generated synthetic data can be used as an alternative to real data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bridson, R.: Fast Poisson disk sampling in arbitrary dimensions. In: Proceedings of ACM SIGGRAPH Sketches (2007)
Dang, Q., Yin, J., Wang, B., Zheng, W.: Deep learning based 2D human pose estimation: a survey. Tsinghua Sci. Technol. 24(6), 663–676 (2019)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of Annual Conference on Robot Learning, pp. 1–16 (2017)
Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)
Eberly, D.: 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. CRC Press, Boca Raton (2006)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Guo, Y., Liu, Y., Georgiou, T., Lew, M.S.: A review of semantic segmentation using deep neural networks. Int. J. Multimedia Inf. Retrieval 7(2), 87–93 (2018)
Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Proceedings of European Conference on Computer Vision, pp. 740–755 (2014)
Liu, L., et al.: Deep learning for generic object detection: a survey. arXiv preprint arXiv:1809.02165 (2018)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)
Qiu, W., Yuille, A.: UnrealCV: connecting computer vision to unreal engine. In: Proceedings of European Conference on Computer Vision, pp. 909–916 (2016)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7
Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Proceedings of Field and Service Robotics, pp. 621–635 (2018)
Tremblay, J., et al.: Training deep networks with synthetic data: bridging the reality gap by domain randomization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1082–10828 (2018)
Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv preprint arXiv:1610.02984 (2016)
Acknowledgment
This work has received funding from the European Union’s Horizon 2020 research and innovation program in the context of the VICTORIA project under grant agreement No. 740754.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pollok, T., Junglas, L., Ruf, B., Schumann, A. (2019). UnrealGT: Using Unreal Engine to Generate Ground Truth Datasets. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-33720-9_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-33719-3
Online ISBN: 978-3-030-33720-9
eBook Packages: Computer ScienceComputer Science (R0)