An Axiomatisation of the Probabilistic $$\mu $$ -Calculus | SpringerLink
Skip to main content

An Axiomatisation of the Probabilistic \(\mu \)-Calculus

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11852))

Included in the following conference series:

  • 1014 Accesses

Abstract

The probabilistic \(\mu \)-calculus (P\(\mu \)TL) is a simple and succinct probabilistic extension of the propositional \(\mu \)-calculus, by extending the ‘next’-operator with a probabilistic quantifier. We extend the approach developed by Walukiewicz for propositional \(\mu \)-calculus and provide an axiomatisation of P\(\mu \)TL. Our main contributions are a sound axiom system for P\(\mu \)TL, and a proof of its completeness for aconjunctive formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University (1997), Technical report STAN-CS-TR-98-1601

    Google Scholar 

  2. de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. In: 33rd ACM Symposium on Theory of Computing, STOC 2001, pp. 675–683. ACM, New York (2001). https://doi.org/10.1145/380752.380871

  3. Baier, C.: On algorithmic verification methods for probabilistic systems. Habilitationsschrift, Universität Mannheim: Fakultät für Mathematik und Informatik (1998)

    Google Scholar 

  4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–74. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51803-7_22

    Chapter  MATH  Google Scholar 

  6. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0_70

    Chapter  MATH  Google Scholar 

  7. Brázdil, T., Forejt, V., Křetínský, J., Kučera, A.: The satisfiability problem for probabilistic CTL. In: Twenty-Third Annual IEEE Symposium on Logic in Computer Science, Los Alamitos, Calif, pp. 391–402. IEEE (2008). https://doi.org/10.1109/LICS.2008.21

  8. Castro, P., Kilmurray, C., Piterman, N.: Tractable probabilistic \(\mu \)-calculus that expresses probabilistic temporal logics. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science: STACS 2015. LIPIcs, vol. 30, pp. 211–223. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.211

  9. Chakraborty, S., Katoen, J.-P.: On the satisfiability of some simple probabilistic logics. In: ACM (ed.) LICS, New York, pp. 56–65 (2016). https://doi.org/10.1145/2933575.2934526

  10. Cleaveland, R., Iyer, S.P., Narasimha, M.: Probabilistic temporal logics via the modal mu-calculus. Theor. Comput. Sci. 342(2–3), 316–350 (2005). https://doi.org/10.1016/j.tcs.2005.03.048

    Article  MathSciNet  MATH  Google Scholar 

  11. Dimitrova, R., Ferrer Fioriti, L.M., Hermanns, H., Majumdar, R.: Probabilistic CTL\(^{*}\): the deductive way. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 280–296. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_16

    Chapter  MATH  Google Scholar 

  12. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: Proceedings 32nd Annual Symposium of Foundations of Computer Science: FOCS, pp. 368–377. IEEE (1991). https://doi.org/10.1109/SFCS.1991.185392

  13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

    Article  MATH  Google Scholar 

  14. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: 12th Annual IEEE Symposium on Logic in Computer Science, Los Alamitos, Calif, pp. 111–122. IEEE (1997). https://doi.org/10.1109/LICS.1997.614940

  15. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350 (1981). https://doi.org/10.1016/0022-0000(81)90036-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Kozen, D.: Results on the propositional \(\mu \)-calculus. Theor. Comput. Sci. 27(3), 333–354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6

    Google Scholar 

  17. Larsen, K.G., Mardare, R., Xue, B.: Probabilistic mu-calculus: decidability and complete axiomatization. In: Lal, A., Akshay, S., Saurabh, S., Sen, S. (eds.) 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science: FSTTCS. LIPIcs, vol. 65, pp. 25:1–25:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.FSTTCS.2016.25

  18. Liu, W., Song, L., Wang, J., Zhang, L.: A simple probabilistic extension of modal mu-calculus. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Palo Alto, Calif, pp. 882–888. AAAI Press (2015). https://www.ijcai.org/Abstract/15/129

  19. McIver, A.K., Morgan, C.C.: Games, probability, and the quantitative \(\upmu \)-calculus \(qM\mu \). In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 292–310. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36078-6_20

    Chapter  Google Scholar 

  20. McIver, A., Morgan, C.: Results on the quantitative \(\mu \)-calculus \(qM\mu \). ACM Trans. Comput. Log. 8(1), 3 (2007). https://doi.org/10.1145/1182613.1182616

    Google Scholar 

  21. Mio, M.: Probabilistic modal \(\mu \)-calculus with independent product. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 290–304. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19805-2_20

    Chapter  Google Scholar 

  22. Morgan, C., McIver, A.: A probabilistic temporal calculus based on expectations. In: Proceedings of Formal Methods Pacific. Citeseer (1997)

    Google Scholar 

  23. Niwiński, D., Walukiewicz, I.: Games for the \({\mu }\)-calculus. Theor. Comput. Sci. 163(1–2), 99–116 (1996). https://doi.org/10.1016/0304-3975(95)00136-0

    Google Scholar 

  24. Pratt, V.R.: A decidable mu-calculus: Preliminary report. In: 22nd Annual Symposium on Foundations of Computer Science, Los Angeles, pp. 421–427. IEEE (1981). https://doi.org/10.1109/SFCS.1981.4

  25. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the propositional mu-calculus. Inf. Comput. 81(3), 249–264 (1989). https://doi.org/10.1016/0890-5401(89)90031-X

    Article  MathSciNet  MATH  Google Scholar 

  26. Tamura, K.: Completeness of Kozen’s axiomatization for the modal mu-calculus: A simple proof. CoRR abs/1408.3560 (2014). http://arxiv.org/abs/1408.3560

  27. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional \(\mu \)-calculus. Inf. Comput. 157(1–2), 142–182 (2000). https://doi.org/10.1006/inco.1999.2836

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grants Nos. 61761136011,61532019), and the Guangdong Science and Technology Department (Grant No. 2018B010107004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Liu, W., Jansen, D.N., Zhang, L. (2019). An Axiomatisation of the Probabilistic \(\mu \)-Calculus. In: Ait-Ameur, Y., Qin, S. (eds) Formal Methods and Software Engineering. ICFEM 2019. Lecture Notes in Computer Science(), vol 11852. Springer, Cham. https://doi.org/10.1007/978-3-030-32409-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32409-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32408-7

  • Online ISBN: 978-3-030-32409-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics