Index Maintenance Strategy and Cost Model for Extended Cluster Pruning | SpringerLink
Skip to main content

Index Maintenance Strategy and Cost Model for Extended Cluster Pruning

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11807))

Included in the following conference series:

  • 1128 Accesses

Abstract

With today’s dynamic multimedia collections, maintenance of high-dimensional indexes is an important, yet understudied topic. Extended Cluster Pruning (eCP) is a highly-scalable approximate indexing approach based on clustering, that is targeted at stable performance in a disk-based scenario. In this work, we propose an index maintenance strategy for the eCP index, which utilizes the tree structure of the index and its approximate nature. We then develop a cost model for the strategy and evaluate its cost using a simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    E.g., see: https://git.savannah.gnu.org/cgit/coreutils.git/tree/src/ioblksize.h.

References

  1. Babenko, A., Lempitsky, V.: The inverted multi-index. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, pp. 3069–3076 (2012)

    Google Scholar 

  2. Chierichetti, F., Panconesi, A., Raghavan, P., Sozio, M., Tiberi, A., Upfal, E.: Finding near neighbors through cluster pruning. In: Proceedings of the Symposium on Principles of Database Systems (PODS), Beijing, China, pp. 103–112 (2007)

    Google Scholar 

  3. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, San Diego, CA, USA, pp. 301–312 (2003)

    Google Scholar 

  4. Gu\({\eth }\)mundsson, G.Þ., Jónsson, B.Þ., Amsaleg, L.: A large-scale performance study of cluster-based high-dimensional indexing. In: Proceedings of the Workshop on Very-Large-Scale Multimedia Corpus, Mining and Retrieval (co-located with ACM Multimedia), Firenze, Italy (2010)

    Google Scholar 

  5. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)

    Article  Google Scholar 

  6. Jónsson, B.Þ., Amsaleg, L., Lejsek, H.: SSD technology enables dynamic maintenance of persistent high-dimensional indexes. In: Proceedings of the ACM International Conference on Multimedia Retrieval (ICMR), New York, NY, USA, pp. 347–350 (2016)

    Google Scholar 

  7. Lejsek, H., Ásmundsson, F.H., Jónsson, B.Þ., Amsaleg, L.: Transactional support for visual instance search. In: Marchand-Maillet, S., Silva, Y.N., Chávez, E. (eds.) SISAP 2018. LNCS, vol. 11223, pp. 73–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02224-2_6

    Chapter  Google Scholar 

  8. Ólafsson, A., Jónsson, B.Þ., Amsaleg, L., Lejsek, H.: Dynamic behavior of balanced NV-trees. Multimedia Syst. 17, 83–100 (2011)

    Article  Google Scholar 

  9. Sigur\({\eth }\)ardóttir, R., Hauksson, H., Jónsson, B.Þ., Amsaleg, L.: Quality vs. time tradeoff for approximate image descriptor search. In: Proceedings of the IEEE EMMA Workshop (co-located with ICDE), Tokyo, Japan (2005)

    Google Scholar 

  10. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Nice, France, pp. 1470–1477 (2003)

    Google Scholar 

  11. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional nearest neighbor search. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Boston, MA, USA, pp. 563–576 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Þór Jónsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Højsgaard, A.M., Jónsson, B.Þ., Bonnet, P. (2019). Index Maintenance Strategy and Cost Model for Extended Cluster Pruning. In: Amato, G., Gennaro, C., Oria, V., Radovanović , M. (eds) Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science(), vol 11807. Springer, Cham. https://doi.org/10.1007/978-3-030-32047-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32047-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32046-1

  • Online ISBN: 978-3-030-32047-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics