Evaluation of the MRI Images Matching Using Normalized Mutual Information Method and Preprocessing Techniques | SpringerLink
Skip to main content

Evaluation of the MRI Images Matching Using Normalized Mutual Information Method and Preprocessing Techniques

  • Conference paper
  • First Online:
Image Processing and Communications (IP&C 2019)

Abstract

One of the common methods for medical diagnosis is Magnetic Resonance Imaging (MRI), a safe, non-invasive method. During each imaging session a patient’s position may be different, therefore comparison of two sequences can become difficult. The primary goal of this work is preparation of an optimal algorithm for co-registration of T1 and T2 weighted MRI images. To adjust co-registration sensitivity, different preprocessing methods to perform normalizations and edge detection were used. The obtained results allow to increase quality of the co-registration process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bielecka, M., Bielecki, A., Korkosz, M., Skomorowski, M., Wojciechowski, W., Zieliński, B.: Application of shape description methodology to hand radiographs interpretation, vol. 6374, pp. 11–18 (2010)

    Chapter  Google Scholar 

  2. Bzowski, P., Danch-Wierzchowska, M., Psiuk-Maksymowicz, K., Panek, R., Borys, D.: Rigid and non-rigid registration algorithm evaluation in MRI for breast cancer therapy monitoring, vol. 762, pp. 150–159 (2019)

    Google Scholar 

  3. D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Med. Image Anal. 7(4), 565–575 (2003)

    Article  Google Scholar 

  4. Kociołek, M., Piórkowski, A., Obuchowicz, R., Kamiński, P., Strzelecki, M.: Lytic region recognition in hip radiograms by means of statistical dominance transform. In: ICCVG. LNCS, vol. 11114, pp. 349–360. Springer (2018)

    Google Scholar 

  5. Nurzynska, K., Smolka, B.: Segmentation of finger joint synovitis in ultrasound images. In: 2016 IEEE ICCE, pp. 335–340. IEEE (2016)

    Google Scholar 

  6. Pietka, E., Pospiech, S., Gertych, A., Cao, F., Huang, H., Gilsanz, V.: Computer automated approach to the extraction of epiphyseal regions in hand radiographs. J. Digit. Imaging 14(4), 165–172 (2001)

    Article  Google Scholar 

  7. Piorkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Information Technologies in Medicine. AISC, vol. 471, pp. 3–14. Springer (2016)

    Google Scholar 

  8. Tadeusiewicz, R., Ogiela, M.R.: Picture languages in automatic radiological palm interpretation. Int. J. Appl. Math. Comput. Sci. 15, 305–312 (2005)

    Google Scholar 

  9. Viola, P.: Alignment by maximization of mutual information. A.I. Technical Report No. 1548 (1995)

    Google Scholar 

  10. Włodarczyk, J., Czaplicka, K., Tabor, Z., Wojciechowski, W., Urbanik, A.: Segmentation of bones in magnetic resonance images of the wrist. Int. J. Comput. Assist. Radiol. Surg. 10(4), 419–431 (2015)

    Article  Google Scholar 

  11. Włodarczyk, J., Wojciechowski, W., Czaplicka, K., Urbanik, A., Tabor, Z.: Fast automated segmentation of wrist bones in magnetic resonance images. Comput. Biol. Med. 65, 44–53 (2015)

    Article  Google Scholar 

  12. Xiong, G.: Local Normalization (2005). www.mathworks.com/matlabcentral/fileexchange/8303-local-normalization

  13. Zieliński, B., Skomorowski, M., Wojciechowski, W., Korkosz, M., Sprȩżak, K.: Computer aided erosions and osteophytes detection based on hand radiographs. Pattern Recogn. 48(7), 2304–2317 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Bzowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bzowski, P., Borys, D., Guz, W., Obuchowicz, R., Piórkowski, A. (2020). Evaluation of the MRI Images Matching Using Normalized Mutual Information Method and Preprocessing Techniques. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_12

Download citation

Publish with us

Policies and ethics