Abstract
One of the common methods for medical diagnosis is Magnetic Resonance Imaging (MRI), a safe, non-invasive method. During each imaging session a patient’s position may be different, therefore comparison of two sequences can become difficult. The primary goal of this work is preparation of an optimal algorithm for co-registration of T1 and T2 weighted MRI images. To adjust co-registration sensitivity, different preprocessing methods to perform normalizations and edge detection were used. The obtained results allow to increase quality of the co-registration process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bielecka, M., Bielecki, A., Korkosz, M., Skomorowski, M., Wojciechowski, W., Zieliński, B.: Application of shape description methodology to hand radiographs interpretation, vol. 6374, pp. 11–18 (2010)
Bzowski, P., Danch-Wierzchowska, M., Psiuk-Maksymowicz, K., Panek, R., Borys, D.: Rigid and non-rigid registration algorithm evaluation in MRI for breast cancer therapy monitoring, vol. 762, pp. 150–159 (2019)
D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Med. Image Anal. 7(4), 565–575 (2003)
Kociołek, M., Piórkowski, A., Obuchowicz, R., Kamiński, P., Strzelecki, M.: Lytic region recognition in hip radiograms by means of statistical dominance transform. In: ICCVG. LNCS, vol. 11114, pp. 349–360. Springer (2018)
Nurzynska, K., Smolka, B.: Segmentation of finger joint synovitis in ultrasound images. In: 2016 IEEE ICCE, pp. 335–340. IEEE (2016)
Pietka, E., Pospiech, S., Gertych, A., Cao, F., Huang, H., Gilsanz, V.: Computer automated approach to the extraction of epiphyseal regions in hand radiographs. J. Digit. Imaging 14(4), 165–172 (2001)
Piorkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Information Technologies in Medicine. AISC, vol. 471, pp. 3–14. Springer (2016)
Tadeusiewicz, R., Ogiela, M.R.: Picture languages in automatic radiological palm interpretation. Int. J. Appl. Math. Comput. Sci. 15, 305–312 (2005)
Viola, P.: Alignment by maximization of mutual information. A.I. Technical Report No. 1548 (1995)
Włodarczyk, J., Czaplicka, K., Tabor, Z., Wojciechowski, W., Urbanik, A.: Segmentation of bones in magnetic resonance images of the wrist. Int. J. Comput. Assist. Radiol. Surg. 10(4), 419–431 (2015)
Włodarczyk, J., Wojciechowski, W., Czaplicka, K., Urbanik, A., Tabor, Z.: Fast automated segmentation of wrist bones in magnetic resonance images. Comput. Biol. Med. 65, 44–53 (2015)
Xiong, G.: Local Normalization (2005). www.mathworks.com/matlabcentral/fileexchange/8303-local-normalization
Zieliński, B., Skomorowski, M., Wojciechowski, W., Korkosz, M., Sprȩżak, K.: Computer aided erosions and osteophytes detection based on hand radiographs. Pattern Recogn. 48(7), 2304–2317 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bzowski, P., Borys, D., Guz, W., Obuchowicz, R., Piórkowski, A. (2020). Evaluation of the MRI Images Matching Using Normalized Mutual Information Method and Preprocessing Techniques. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-31254-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31253-4
Online ISBN: 978-3-030-31254-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)