Enhancing Reaction Systems: A Process Algebraic Approach | SpringerLink
Skip to main content

Abstract

In the area of Natural Computing, reaction systems are a qualitative abstraction inspired by the functioning of living cells, suitable to model the main mechanisms of biochemical reactions. This model has already been applied and extended successfully to various areas of research. Reaction systems interact with the environment represented by the context, and pose problems of implementation, as it is a new computation model. In this paper we consider the link-calculus, which allows to model multiparty interaction in concurrent systems, and show that it allows to embed reaction systems, by representing the behaviour of each entity and preserving faithfully their features. We show the correctness and completeness of our embedding. We illustrate our framework by showing how to embed a lac operon regulatory network. Finally, our framework can contribute to increase the expressiveness of reaction systems, by exploiting the interaction among different reaction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    After ‘chained Core Network Algebra’.

References

  1. Azimi, S.: Steady states of constrained reaction systems. Theor. Comput. Sci. 701(C), 20–26 (2017). https://doi.org/10.1016/j.tcs.2017.03.047

    Article  MathSciNet  MATH  Google Scholar 

  2. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response. Fundam. Inf. 131(3–4), 299–312 (2014). https://doi.org/10.3233/FI-2014-1016

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Investigating dynamic causalities in reaction systems. Theor. Comput. Sci. 623, 114–145 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bernini, A., Brodo, L., Degano, P., Falaschi, M., Hermith, D.: Process calculi for biological processes. Nat. Comput. 17(2), 345–373 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bodei, C., Brodo, L., Bruni, R.: Open multiparty interaction. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 1–23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37635-1_1

    Chapter  Google Scholar 

  6. Bodei, C., Brodo, L., Bruni, R., Chiarugi, D.: A flat process calculus for nested membrane interactions. Sci. Ann. Comp. Sci. 24(1), 91–136 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bodei, C., Brodo, L., Gori, R., Levi, F., Bernini, A., Hermith, D.: A static analysis for Brane Calculi providing global occurrence counting information. Theoret. Comput. Sci. 696, 11–51 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bodei, C., Brodo, L., Bruni, R.: A formal approach to open multiparty interactions. Theoret. Comput. Sci. 763, 38–65 (2019)

    Article  MathSciNet  Google Scholar 

  9. Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(07), 1499–1517 (2011)

    Article  MathSciNet  Google Scholar 

  10. Brodo, L.: On the expressiveness of pi-calculus for encoding mobile ambients. Math. Struct. Comput. Sci. 28(2), 202–240 (2018)

    Article  MathSciNet  Google Scholar 

  11. Brodo, L., Olarte, C.: Symbolic semantics for multiparty interactions in the link-calculus. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 62–75. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_6

    Chapter  Google Scholar 

  12. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoret. Comput. Sci. 240(1), 177–213 (2000)

    Article  MathSciNet  Google Scholar 

  13. Chiarugi, D., Falaschi, M., Hermith, D., Olarte, C., Torella, L.: Modelling non-markovian dynamics in biochemical reactions. BMC Syst. Biol. 9(S–3), S8 (2015)

    Article  Google Scholar 

  14. Chiarugi, D., Falaschi, M., Olarte, C., Palamidessi, C.: Compositional modelling of signalling pathways in timed concurrent constraint programming. In: Proceedings of ACM BCB 2010, pp. 414–417. ACM, New York (2010)

    Google Scholar 

  15. Corolli, L., Maj, C., Marinia, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: from computer science to biology. Theoret. Comput. Sci. 454, 95–108 (2012)

    Article  MathSciNet  Google Scholar 

  16. Falaschi, M., Olarte, C., Palamidessi, C.: Abstract interpretation of temporal concurrent constraint programs. Theory Pract. Logic Program. 15(3), 312–357 (2015)

    Article  MathSciNet  Google Scholar 

  17. Mȩski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of reaction systems. Inf. Sci. 313, 22–42 (2015). https://doi.org/10.1016/j.ins.2015.03.048

    Article  MATH  Google Scholar 

  18. Okubo, F., Yokomori, T.: The computational capability of chemical reaction automata. Natural Comput. 15(2), 215–224 (2016). https://doi.org/10.1007/s11047-015-9504-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Olarte, C.: SiLVer: Symbolic links verifier, December 2018. http://subsell.logic.at/links/links-web/index.html

  20. Olarte, C., Chiarugi, D., Falaschi, M., Hermith, D.: A proof theoretic view of spatial and temporal dependencies in biochemical systems. Theor. Comput. Sci. 641, 25–42 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their detailed and very useful criticisms and recommendations that helped us to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Brodo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brodo, L., Bruni, R., Falaschi, M. (2019). Enhancing Reaction Systems: A Process Algebraic Approach. In: Alvim, M., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds) The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy. Lecture Notes in Computer Science(), vol 11760. Springer, Cham. https://doi.org/10.1007/978-3-030-31175-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31175-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31174-2

  • Online ISBN: 978-3-030-31175-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics