Semi-supervised Learning to Rank with Uncertain Data | SpringerLink
Skip to main content

Semi-supervised Learning to Rank with Uncertain Data

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11817))

Included in the following conference series:

Abstract

Although, semi-supervised learning with a small amount of labeled data can be utilized to improve the effectiveness of learning to rank in information retrieval, the pseudo labels created by semi-supervised learning may not reliable. The uncertain data nearby the boundaries of relevant and irrelevant documents for a given query has a significant impact on the effectiveness of learning to rank. Therefore, how to utilize the uncertain data to bring benefit for semi-supervised learning to rank is an excellent challenge. In this paper, we propose a semi-supervised learning to rank algorithm, that builds a query-quality predictor by utilizing uncertain data. Specially, this approach selects the training queries following the empirical observation that the relevant documents of high quality training queries are highly coherent. This approach learns from the uncertain data to predict the retrieval performance gain of a given training query by making use of query features. Then the pseudo labels for learning to rank are aggregated iteratively by semi-supervised learning with the selected queries. Experimental results on the standard LETOR dataset show that our proposed approaches outperform the strong baselines.

Supported by the Natural Science Foundation of Hefei University (18ZR07ZDA, 19ZR04ZDA), National Nature Science Foundation of China (Grant No. 61806068), the natural science research key project of Anhui university (Grant No. KJ2018A0556), the grant of Natural Science Foundation of Hefei University (Grant No. 16-17RC19,18-19RC27).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, T.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3, 225–331 (2011)

    Article  Google Scholar 

  2. Szummer, M., Yilmaz, E.: Semi-supervised learning to rank with preference regularization. In: Proceedings of the 20th ACM Conference on Conference on Information and Knowledge Management, CIKM 2011, pp. 269–278 (2011)

    Google Scholar 

  3. van den Akker, B., Markov, I., de Rijken, M.: ViTOR: learning to rank webpages based on visual features. In: The Web Conference (2019)

    Google Scholar 

  4. Zoghi, M., Tunys, T., Ghavamzadeh, M., Kveton, B., Szepesvari, C., Wen, Z.: Online learning to rank in stochastic click models. In: Proceedings of the 20th ACM Conference on Conference on Proceedings of the 34th International Conference on Machine Learning, pp. 4199–4208 (2017)

    Google Scholar 

  5. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural networks. In: Proceedings of the 38th International ACM SIGIR Conference (2015)

    Google Scholar 

  6. Wang, B., Klabjan, D.: An attention-based deep net for learning to rank (2017). arXiv preprint arXiv

    Google Scholar 

  7. Qin, T., Liu, T.: Introducing LETOR 4.0 datasets. Technical Report Microsoft Research Asia (2013)

    Google Scholar 

  8. Ganjisaffar, Y., Caruana, R., Lope, C.: Bagging gradient-boosted trees for high precision, low variance ranking models. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 85–94. ACM, New York, NY, USA (2011)

    Google Scholar 

  9. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 133–142. ACM, New York, NY, USA (2002)

    Google Scholar 

  10. Hu, H., Sha, C., Wang, X., Zhou, A.: A unified framework for semi-supervised Pu learning. World Wide Web 17(4), 493–510 (2014)

    Article  Google Scholar 

  11. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. MIT Press, Cambridge (2010)

    Google Scholar 

  12. Sellamanickam, S., Garg, P., Selvaraj, S.K.: A pairwise ranking based approach to learning with positive and unlabeled examples. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 663–672. ACM, New York, NY, USA (2011)

    Google Scholar 

  13. Huang, J.X., Miao, J., He, B.: High performance query expansion using adaptive co-training. Inf. Process. Manage. 49(2), 441–453 (2013). https://doi.org/10.1016/j.ipm.2012.08.002

    Article  Google Scholar 

  14. Usunier, N., Truong, V., Amini, M.R., Gallinari, P., Curie, M.: Ranking with unlabeled data: a first study. In: Proceedings of NIPS Workshop (2005)

    Google Scholar 

  15. Zhang, L., Ma, B., He, J., Li, G., Huang, Q., Tian, Q.: Adaptively unified semi-supervised learning for cross-modal retrieval. In: Proceedings of the Twenty-Sixth International Joint Conference on Articial Intelligence(IJCAI-17) (2017)

    Google Scholar 

  16. Duh, K., Kirchhoff, K.: Learning to rank with partially-labeled data. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, pp. 251–258. ACM, New York, NY, USA (2008)

    Google Scholar 

  17. Li, M., Li, H., Zhou, Z.H.: Semi-supervised document retrieval. Inf. Process. Manage. 45, 341–355 (2009)

    Article  Google Scholar 

  18. Kim, A., Cho, S.-B.: An ensemble semi-supervised learning method for predicting defaults in social lending. Eng. Appl. Artif. Intell. 81, 193–199 (2019)

    Article  Google Scholar 

  19. Hong, T.P., Tseng, S.S.: A generalized version space learning algorithm for noisy and uncertain data. IEEE Trans. Knowl. Data Eng. 9(2), 336–340 (1997)

    Article  Google Scholar 

  20. Rhee, P.K., Erdenee, E., Kyun, S.D., Ahmed, M.U., Jin, S.: Active and semi-supervised learning for object detection with imperfect data. Cogn. Syst. Res. 45, 109–123 (2017)

    Article  Google Scholar 

  21. Dallaire, P., Besse, C., Chaib-draa, B.: An approximate inference with Gaussian process to latent functions from uncertain data. Neurocomputing 74, 1945–1955 (2011)

    Article  Google Scholar 

  22. Liang, C., Zhang, Y., Shi, P., Hu, Z.: Information sciences learning very fast decision tree from uncertain data streams with positive and unlabeled samples. Inf. Sci. 213, 50–67 (2012)

    Article  Google Scholar 

  23. Zhu, M., Gao, Z., Qi, G., Ji, Q.: DLP learning from uncertain data. Tsinghua Sci. Technol. 15, 650–656 (2010)

    Article  Google Scholar 

  24. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2002, pp. 299–306. ACM, New York, NY, USA (2002)

    Google Scholar 

  25. Zhou, Y., Croft, W.B.: Query performance prediction in web search environments. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2007, pp. 543–550. ACM, New York, NY, USA (2007)

    Google Scholar 

  26. Shtok, A., Kurland, O., Carmel, D., Raiber, F., Markovits, G.: Predicting query performance by query-drift estimation. ACM Trans. Inf. Syst. 30(2), 11:1–11:35 (2012)

    Article  Google Scholar 

  27. Reitmaie, T., Calma, A., Sick, B.: Transductive active learning –a new semi-supervised learning approach based on iteratively refined generative models to capture structure in data. Inf. Sci. 293, 275–298 (2015)

    Article  Google Scholar 

  28. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive bayes: aggregating one-dependence estimators. Mach. Learn. 58(1), 5–24 (2005)

    Article  Google Scholar 

  29. Palei, S.K., Das, S.K.: Logistic regression model for prediction of roof fall risks in bord and pillar workings in coal mines: an approach. Saf. Sci. 47(1), 88–96 (2009)

    Article  Google Scholar 

  30. Zhang, X., He, B., Luo, T.: Transductive learning for real-time twitter search. In: The International Conference on Weblogs and Social Media (ICWSM), pp. 611–614 (2012)

    Google Scholar 

  31. Liu, T., Xu, J., Qin, T., Xiong, W., Li, H.: LETOR: benchmark dataset for research on learning to rank for information retrieval. In: SIGIR 2007 Workshop on Learning to Rank for Information Retrieval (2007)

    Google Scholar 

  32. Geng, X., Qin, T., Liu, T., Cheng, X., Li, H.: Selecting optimal training data for learning to rank. Inf. Process. Manage. 47(5), 730–741 (2011)

    Article  Google Scholar 

  33. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning by uncertainty sampling with diversity maximization. Int. J. Comput. Vis. 113, 113–127 (2015)

    Article  MathSciNet  Google Scholar 

  34. Shang, C., Huang, X., You, F.: Data-driven robust optimization based on kernel learning. Comput. Chem. Eng. 106, 464–479 (2017)

    Article  Google Scholar 

  35. Liu, J., Cui, R., Zhao, Y.: Multilingual short text classification via convolutional neural network. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds.) WISA 2018. LNCS, vol. 11242, pp. 27–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02934-0_3

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Natural Science Foundation of Hefei University (18ZR07ZDA,19ZR04ZDA), National Nature Science Foundation of China (Grant No. 61806068), the natural science research key project of Anhui university (Grant No. KJ2018A0556), the grant of Natural Science Foundation of Hefei University (Grant No. 16-17RC19,18-19RC27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhao, Z., Liu, C., Zhang, C., Cheng, Z. (2019). Semi-supervised Learning to Rank with Uncertain Data. In: Ni, W., Wang, X., Song, W., Li, Y. (eds) Web Information Systems and Applications. WISA 2019. Lecture Notes in Computer Science(), vol 11817. Springer, Cham. https://doi.org/10.1007/978-3-030-30952-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30952-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30951-0

  • Online ISBN: 978-3-030-30952-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics