Abstract
In the last few years the systematic adoption of deep learning to visual generation has produced impressive results that, amongst others, definitely benefit from the massive exploration of convolutional architectures. In this paper, we propose a general approach to visual generation that combines learning capabilities with logic descriptions of the target to be generated. The process of generation is regarded as a constrained satisfaction problem, where the constraints describe a set of properties that characterize the target. Interestingly, the constraints can also involve logic variables, while all of them are converted into real-valued functions by means of the t-norm theory. We use deep architectures to model the involved variables, and propose a computational scheme where the learning process carries out a satisfaction of the constraints. We propose some examples in which the theory can naturally be used, including the modeling of GAN and auto-encoders, and report promising results in image translation of human faces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
For simplicity we do not consider here the case \(f_R(x)=f_R(y)=0\).
References
Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)
Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss Markov random fields and probabilistic soft logic. arXiv preprint arXiv:1505.04406 (2015)
Cohen, W.W.: TensorLog: a differentiable deductive database. arXiv preprint arXiv:1605.06523 (2016)
Demeester, T., Rocktäschel, T., Riedel, S.: Lifted rule injection for relation embeddings. arXiv preprint arXiv:1606.08359 (2016)
Diligenti, M., Gori, M., Maggini, M., Rigutini, L.: Bridging logic and kernel machines. Mach. Learn. 86(1), 57–88 (2012)
Diligenti, M., Gori, M., Saccà, C.: Semantic-based regularization for learning and inference. Artif. Intell. 244, 143–165 (2015)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Hajek, P.: Metamathematics of Fuzzy Logic. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5300-3
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with logic rules. arXiv preprint arXiv:1603.06318 (2016)
Kimmig, A., Bach, S., Broecheler, M., Huang, B., Getoor, L.: A short introduction to probabilistic soft logic. In: Proceedings of the NIPS Workshop on Probabilistic Programming: Foundations and Applications, pp. 1–4 (2012)
Li, C., et al.: ALICE: towards understanding adversarial learning for joint distribution matching. In: Advances in Neural Information Processing Systems, pp. 5501–5509 (2017)
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)
Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 469–477. Curran Associates Inc. (2016)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015
Marra, G., Giannini, F., Diligenti, M., Gori, M.: Lyrics: a general interface layer to integrate AI and deep learning. arXiv preprint arXiv:1903.07534 (2019)
Minervini, P., Demeester, T., Rocktäschel, T., Riedel, S.: Adversarial sets for regularising neural link predictors. arXiv preprint arXiv:1707.07596 (2017)
Novák, V.: First-order fuzzy logic. Stud. Logica. 46(1), 87–109 (1987)
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136 (2006)
Rocktäschel, T., Singh, S., Riedel, S.: Injecting logical background knowledge into embeddings for relation extraction. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1119–1129 (2015)
Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv:1706.04987 (2017)
Serafini, L., d’Avila Garcez, A.S.: Learning and reasoning with logic tensor networks. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 334–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_25
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2223–2232 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Marra, G., Giannini, F., Diligenti, M., Gori, M. (2019). Constraint-Based Visual Generation. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-30508-6_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30507-9
Online ISBN: 978-3-030-30508-6
eBook Packages: Computer ScienceComputer Science (R0)