Constraint-Based Visual Generation | SpringerLink
Skip to main content

Constraint-Based Visual Generation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

Abstract

In the last few years the systematic adoption of deep learning to visual generation has produced impressive results that, amongst others, definitely benefit from the massive exploration of convolutional architectures. In this paper, we propose a general approach to visual generation that combines learning capabilities with logic descriptions of the target to be generated. The process of generation is regarded as a constrained satisfaction problem, where the constraints describe a set of properties that characterize the target. Interestingly, the constraints can also involve logic variables, while all of them are converted into real-valued functions by means of the t-norm theory. We use deep architectures to model the involved variables, and propose a computational scheme where the learning process carries out a satisfaction of the constraints. We propose some examples in which the theory can naturally be used, including the modeling of GAN and auto-encoders, and report promising results in image translation of human faces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    URL: https://github.com/GiuseppeMarra/lyrics.

  2. 2.

    For simplicity we do not consider here the case \(f_R(x)=f_R(y)=0\).

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss Markov random fields and probabilistic soft logic. arXiv preprint arXiv:1505.04406 (2015)

  3. Cohen, W.W.: TensorLog: a differentiable deductive database. arXiv preprint arXiv:1605.06523 (2016)

  4. Demeester, T., Rocktäschel, T., Riedel, S.: Lifted rule injection for relation embeddings. arXiv preprint arXiv:1606.08359 (2016)

  5. Diligenti, M., Gori, M., Maggini, M., Rigutini, L.: Bridging logic and kernel machines. Mach. Learn. 86(1), 57–88 (2012)

    Article  MathSciNet  Google Scholar 

  6. Diligenti, M., Gori, M., Saccà, C.: Semantic-based regularization for learning and inference. Artif. Intell. 244, 143–165 (2015)

    Article  MathSciNet  Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Hajek, P.: Metamathematics of Fuzzy Logic. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5300-3

    Book  MATH  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hu, Z., Ma, X., Liu, Z., Hovy, E., Xing, E.: Harnessing deep neural networks with logic rules. arXiv preprint arXiv:1603.06318 (2016)

  11. Kimmig, A., Bach, S., Broecheler, M., Huang, B., Getoor, L.: A short introduction to probabilistic soft logic. In: Proceedings of the NIPS Workshop on Probabilistic Programming: Foundations and Applications, pp. 1–4 (2012)

    Google Scholar 

  12. Li, C., et al.: ALICE: towards understanding adversarial learning for joint distribution matching. In: Advances in Neural Information Processing Systems, pp. 5501–5509 (2017)

    Google Scholar 

  13. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, pp. 700–708 (2017)

    Google Scholar 

  14. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 469–477. Curran Associates Inc. (2016)

    Google Scholar 

  15. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  16. Marra, G., Giannini, F., Diligenti, M., Gori, M.: Lyrics: a general interface layer to integrate AI and deep learning. arXiv preprint arXiv:1903.07534 (2019)

  17. Minervini, P., Demeester, T., Rocktäschel, T., Riedel, S.: Adversarial sets for regularising neural link predictors. arXiv preprint arXiv:1707.07596 (2017)

  18. Novák, V.: First-order fuzzy logic. Stud. Logica. 46(1), 87–109 (1987)

    Article  MathSciNet  Google Scholar 

  19. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136 (2006)

    Article  Google Scholar 

  20. Rocktäschel, T., Singh, S., Riedel, S.: Injecting logical background knowledge into embeddings for relation extraction. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1119–1129 (2015)

    Google Scholar 

  21. Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv:1706.04987 (2017)

  22. Serafini, L., d’Avila Garcez, A.S.: Learning and reasoning with logic tensor networks. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 334–348. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_25

    Chapter  Google Scholar 

  23. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Giannini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marra, G., Giannini, F., Diligenti, M., Gori, M. (2019). Constraint-Based Visual Generation. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics