Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks | SpringerLink
Skip to main content

Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11727))

Included in the following conference series:

  • 3018 Accesses

Abstract

Synfire rings are important neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We describe a robust and optimal-size implementation of finite state automata with neural networks composed of synfire rings. More precisely, given any finite automaton, we build a corresponding neural network partly composed of synfire rings and capable of simulating it. The synfire ring activities encode the successive states of the automaton throughout its computation. The robustness of the network results from its architecture, which involves synfire rings and duplicated core components. We finally show that the network’s size is asymptotically optimal: for an automaton with n states, the network has \(\varTheta (\sqrt{n})\) cells.

Supports from DARPA – Lifelong Learning Machines (L2M) program, cooperative agreement No. HR0011-18-2-0023, as well as from the ICS CAS RVO: 67985807 and the Czech Science Foundation, grant No. 19-05704S, are gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeles, M.: Corticonics: Neuronal Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  2. Abeles, M.: Time is precious. Science 304(5670), 523–524 (2004). https://doi.org/10.1126/science.1097725

    Article  Google Scholar 

  3. Cabessa, J., Horcholle-Bossavit, G., Quenet, B.: Neural computation with spiking neural networks composed of synfire rings. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 245–253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_29

    Chapter  Google Scholar 

  4. Cabessa, J., Masulli, P.: Emulation of finite state automata with networks of synfire rings. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14–19, 2017, pp. 4641–4648. IEEE (2017). https://doi.org/10.1109/IJCNN.2017.7966445

  5. Cabessa, J., Siegelmann, H.T.: The super-turing computational power of plastic recurrent neural networks. Int. J. Neural Syst. 24(8), 1450029 (2014). https://doi.org/10.1142/S0129065714500294

    Article  Google Scholar 

  6. Cabessa, J., Tchaptchet, A.: Automata computation with Hodgkin-Huxley based neural networks composed of synfire rings. In: 2018 International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8–13, 2018, pp. 1–8. IEEE (2018). https://doi.org/10.1109/IJCNN.2018.8489700

  7. Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999). https://doi.org/10.1038/990101

    Article  Google Scholar 

  8. Hertz, J., Prügel-Bennett, A.: Learning synfire chains by self-organization. Netw.: Comput. Neural Syst. 7(2), 357–363 (1996). https://doi.org/10.1088/0954-898X_7_2_017

    Article  MATH  Google Scholar 

  9. Hertz, J., Prügel-Bennett, A.: Learning synfire chains: turning noise into signal. Int. J. Neural Syst. 7(4), 445–450 (1996). https://doi.org/10.1142/S0129065796000427

    Article  MATH  Google Scholar 

  10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Pearson international edition, Addison-Wesley, Boston (2007)

    MATH  Google Scholar 

  11. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Netw. 9(2), 243–252 (1996). https://doi.org/10.1016/0893-6080(95)00095-X

    Article  Google Scholar 

  12. Ikegaya, Y., et al.: Synfire chains and cortical songs: temporal modules of cortical activity. Science 304(5670), 559–564 (2004). https://doi.org/10.1126/science.1093173

    Article  Google Scholar 

  13. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 337–348. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0_85

    Chapter  Google Scholar 

  14. Jun, J.K., Jin, D.Z.: Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. PLOS One 2(8), 1–17 (2007). https://doi.org/10.1371/journal.pone.0000723

    Article  Google Scholar 

  15. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, vol. 34, pp. 3–42. Princeton University Press, Princeton (1956). https://doi.org/10.1515/9781400882618-002

    Chapter  Google Scholar 

  16. Levy, N., Horn, D., Meilijson, I., Ruppin, E.: Distributed synchrony in a cell assembly of spiking neurons. Neural Netw. 14(6–7), 815–824 (2001). https://doi.org/10.1016/S0893-6080(01)00044-2

    Article  Google Scholar 

  17. Lupanov, O.B.: On the synthesis of threshold circuits. Probl. Kibernet. 26, 109–140 (1973)

    Google Scholar 

  18. Mainen, Z., Sejnowski, T.: Reliability of spike timing in neocortical neurons. Science 268(5216), 1503–1506 (1995). https://doi.org/10.1126/science.7770778

    Article  Google Scholar 

  19. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., Englewood Cliffs (1967)

    MATH  Google Scholar 

  20. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhauser Boston Inc., Cambridge (1999)

    Book  Google Scholar 

  21. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theor. Comput. Sci. 131(2), 331–360 (1994). https://doi.org/10.1016/0304-3975(94)90178-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. Syst. Sci. 50(1), 132–150 (1995). https://doi.org/10.1006/jcss.1995.1013

    Article  MathSciNet  MATH  Google Scholar 

  23. Šíma, J.: Energy complexity of recurrent neural networks. Neural Comput. 26(5), 953–973 (2014). https://doi.org/10.1162/NECO_a_00579

    Article  MathSciNet  MATH  Google Scholar 

  24. Šíma, J., Orponen, P.: General-purpose computation with neural networks: a survey of complexity theoretic results. Neural Comput. 15(12), 2727–2778 (2003). https://doi.org/10.1162/089976603322518731

    Article  MATH  Google Scholar 

  25. Šíma, J., Wiedermann, J.: Theory of neuromata. J. ACM 45(1), 155–178 (1998). https://doi.org/10.1145/273865.273914

    Article  MathSciNet  MATH  Google Scholar 

  26. Zheng, P., Triesch, J.: Robust development of synfire chains from multiple plasticity mechanisms. Front. Comput. Neurosci. 8(66) (2014). https://doi.org/10.3389/fncom.2014.00066

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Cabessa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabessa, J., Šíma, J. (2019). Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics