On Deep Set Learning and the Choice of Aggregations | SpringerLink
Skip to main content

On Deep Set Learning and the Choice of Aggregations

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11727))

Included in the following conference series:

Abstract

Recently, it has been shown that many functions on sets can be represented by sum decompositions. These decompositons easily lend themselves to neural approximations, extending the applicability of neural nets to set-valued inputs—Deep Set learning. This work investigates a core component of Deep Set architecture: aggregation functions. We suggest and examine alternatives to commonly used aggregation functions, including learnable recurrent aggregation functions. Empirically, we show that the Deep Set networks are highly sensitive to the choice of aggregation functions: beyond improved performance, we find that learnable aggregations lower hyper-parameter sensitivity and generalize better to out-of-distribution input size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Disambiguating terms like set and sample, we discuss data sets of populations of particles.

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning Representations and Generative Models for 3D Point Clouds, February 2018. https://openreview.net/forum?id=BJInEZsTb

  2. Chang, M.B., Ullman, T., Torralba, A., Tenenbaum, J.B.: A Compositional Object-Based Approach to Learning Physical Dynamics. arXiv:1612.00341 [cs], December 2016

  3. Chen, X., Cheng, X., Mallat, S.: Unsupervised deep haar scattering on graphs. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 1709–1717. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5545-unsupervised-deep-haar-scattering-on-graphs.pdf

  4. Edwards, H., Storkey, A.: Towards a Neural Statistician. arXiv:1606.02185 [cs, stat], June 2016

  5. Eslami, S.M.A., et al.: Attend, infer, repeat: fast scene understanding with generative models. In: Proceedings of the 30th International Conference on Neural Information Processing Systems NIPS 2016, pp. 3233–3241. Curran Associates Inc., USA (2016). http://dl.acm.org/citation.cfm?id=3157382.3157459

  6. Guttenberg, N., Virgo, N., Witkowski, O., Aoki, H., Kanai, R.: Permutation-equivariant neural networks applied to dynamics prediction. arXiv:1612.04530 [cs, stat], December 2016

  7. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: International Joint Conference on Neural Networks, vol. 1, pp. 593–605. IEEE, Washington (1989). https://doi.org/10.1109/IJCNN.1989.118638, http://ieeexplore.ieee.org/document/118638/

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997).https://doi.org/10.1162/neco.1997.9.8.1735,https://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  9. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8, http://www.sciencedirect.com/science/article/pii/0893608089900208

    Article  Google Scholar 

  10. Ilse, M., Tomczak, J.M., Welling, M.: Attention-based Deep Multiple Instance Learning, February 2018. https://arxiv.org/abs/1802.04712

  11. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs, stat], December 2013

  12. Kolmogorov, A.N.: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Doklady Akademii Nauk SSSR 114, 953–956 (1957). https://zbmath.org/?q=an%3A0090.27103, mSC2010: 26B40 = Representation and superposition of functions of several real variables

  13. Kosiorek, A., Kim, H., Teh, Y.W., Posner, I.: Sequential attend, infer, repeat: generative modelling of moving objects. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 8606–8616. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/8079-sequential-attend-infer-repeat-generative-modelling-of-moving-objects.pdf

  14. Lee, J., Lee, Y., Kim, J., Kosiorek, A.R., Choi, S., Teh, Y.W.: Set Transformer, October 2018. https://arxiv.org/abs/1810.00825

  15. Murphy, R.L., Srinivasan, B., Rao, V., Ribeiro, B.: Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs. arXiv:1811.01900 [cs, stat], November 2018

  16. Poczos, B., Singh, A., Rinaldo, A., Wasserman, L.: Distribution-free distribution regression. In: Artificial Intelligence and Statistics, pp. 507–515, April 2013. http://proceedings.mlr.press/v31/poczos13a.html

  17. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv:1711.08488 [cs], November 2017

  18. Qi, C.R., Su, H., Kaichun, M., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85, July 2017. https://doi.org/10.1109/CVPR.2017.16

  19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon, I. et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5099–5108. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf

  20. Ravanbakhsh, S., Schneider, J., Poczos, B.: Deep Learning with Sets and Point Clouds. arXiv:1611.04500 [cs, stat], November 2016

  21. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069, June 2016. http://proceedings.mlr.press/v48/reed16.html

  22. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic Backpropagation and Approximate Inference in Deep Generative Models, January 2014. https://arxiv.org/abs/1401.4082

  23. Santoro, A., et al.: A simple neural network module for relational reasoning. arXiv:1706.01427 [cs], June 2017

  24. Vinyals, O., Bengio, S., Kudlur, M.: Order Matters: Sequence to sequence for sets. arXiv:1511.06391 [cs, stat], November 2015

  25. Wagstaff, E., Fuchs, F.B., Engelcke, M., Posner, I., Osborne, M.: On the Limitations of Representing Functions on Sets. arXiv:1901.09006 [cs, stat], January 2019

  26. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic Graph CNN for Learning on Point Clouds. arXiv:1801.07829 [cs], January 2018

  27. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0038202

    Chapter  Google Scholar 

  28. Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.: GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud. arXiv:1812.03320 [cs], December 2018

  29. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3391–3401. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6931-deep-sets.pdf

  30. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920. IEEE, Boston, June 2015. https://doi.org/10.1109/CVPR.2015.7298801, http://ieeexplore.ieee.org/document/7298801/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Soelch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soelch, M., Akhundov, A., van der Smagt, P., Bayer, J. (2019). On Deep Set Learning and the Choice of Aggregations. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics