Abstract
Recently, it has been shown that many functions on sets can be represented by sum decompositions. These decompositons easily lend themselves to neural approximations, extending the applicability of neural nets to set-valued inputs—Deep Set learning. This work investigates a core component of Deep Set architecture: aggregation functions. We suggest and examine alternatives to commonly used aggregation functions, including learnable recurrent aggregation functions. Empirically, we show that the Deep Set networks are highly sensitive to the choice of aggregation functions: beyond improved performance, we find that learnable aggregations lower hyper-parameter sensitivity and generalize better to out-of-distribution input size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Disambiguating terms like set and sample, we discuss data sets of populations of particles.
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning Representations and Generative Models for 3D Point Clouds, February 2018. https://openreview.net/forum?id=BJInEZsTb
Chang, M.B., Ullman, T., Torralba, A., Tenenbaum, J.B.: A Compositional Object-Based Approach to Learning Physical Dynamics. arXiv:1612.00341 [cs], December 2016
Chen, X., Cheng, X., Mallat, S.: Unsupervised deep haar scattering on graphs. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 1709–1717. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5545-unsupervised-deep-haar-scattering-on-graphs.pdf
Edwards, H., Storkey, A.: Towards a Neural Statistician. arXiv:1606.02185 [cs, stat], June 2016
Eslami, S.M.A., et al.: Attend, infer, repeat: fast scene understanding with generative models. In: Proceedings of the 30th International Conference on Neural Information Processing Systems NIPS 2016, pp. 3233–3241. Curran Associates Inc., USA (2016). http://dl.acm.org/citation.cfm?id=3157382.3157459
Guttenberg, N., Virgo, N., Witkowski, O., Aoki, H., Kanai, R.: Permutation-equivariant neural networks applied to dynamics prediction. arXiv:1612.04530 [cs, stat], December 2016
Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: International Joint Conference on Neural Networks, vol. 1, pp. 593–605. IEEE, Washington (1989). https://doi.org/10.1109/IJCNN.1989.118638, http://ieeexplore.ieee.org/document/118638/
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997).https://doi.org/10.1162/neco.1997.9.8.1735,https://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8, http://www.sciencedirect.com/science/article/pii/0893608089900208
Ilse, M., Tomczak, J.M., Welling, M.: Attention-based Deep Multiple Instance Learning, February 2018. https://arxiv.org/abs/1802.04712
Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs, stat], December 2013
Kolmogorov, A.N.: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Doklady Akademii Nauk SSSR 114, 953–956 (1957). https://zbmath.org/?q=an%3A0090.27103, mSC2010: 26B40 = Representation and superposition of functions of several real variables
Kosiorek, A., Kim, H., Teh, Y.W., Posner, I.: Sequential attend, infer, repeat: generative modelling of moving objects. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 8606–8616. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/8079-sequential-attend-infer-repeat-generative-modelling-of-moving-objects.pdf
Lee, J., Lee, Y., Kim, J., Kosiorek, A.R., Choi, S., Teh, Y.W.: Set Transformer, October 2018. https://arxiv.org/abs/1810.00825
Murphy, R.L., Srinivasan, B., Rao, V., Ribeiro, B.: Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs. arXiv:1811.01900 [cs, stat], November 2018
Poczos, B., Singh, A., Rinaldo, A., Wasserman, L.: Distribution-free distribution regression. In: Artificial Intelligence and Statistics, pp. 507–515, April 2013. http://proceedings.mlr.press/v31/poczos13a.html
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv:1711.08488 [cs], November 2017
Qi, C.R., Su, H., Kaichun, M., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85, July 2017. https://doi.org/10.1109/CVPR.2017.16
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon, I. et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5099–5108. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf
Ravanbakhsh, S., Schneider, J., Poczos, B.: Deep Learning with Sets and Point Clouds. arXiv:1611.04500 [cs, stat], November 2016
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069, June 2016. http://proceedings.mlr.press/v48/reed16.html
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic Backpropagation and Approximate Inference in Deep Generative Models, January 2014. https://arxiv.org/abs/1401.4082
Santoro, A., et al.: A simple neural network module for relational reasoning. arXiv:1706.01427 [cs], June 2017
Vinyals, O., Bengio, S., Kudlur, M.: Order Matters: Sequence to sequence for sets. arXiv:1511.06391 [cs, stat], November 2015
Wagstaff, E., Fuchs, F.B., Engelcke, M., Posner, I., Osborne, M.: On the Limitations of Representing Functions on Sets. arXiv:1901.09006 [cs, stat], January 2019
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic Graph CNN for Learning on Point Clouds. arXiv:1801.07829 [cs], January 2018
Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0038202
Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.: GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud. arXiv:1812.03320 [cs], December 2018
Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3391–3401. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/6931-deep-sets.pdf
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920. IEEE, Boston, June 2015. https://doi.org/10.1109/CVPR.2015.7298801, http://ieeexplore.ieee.org/document/7298801/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Soelch, M., Akhundov, A., van der Smagt, P., Bayer, J. (2019). On Deep Set Learning and the Choice of Aggregations. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-30487-4_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30486-7
Online ISBN: 978-3-030-30487-4
eBook Packages: Computer ScienceComputer Science (R0)