Faster Visual-Based Localization with Mobile-PoseNet | SpringerLink
Skip to main content

Faster Visual-Based Localization with Mobile-PoseNet

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11679))

Included in the following conference series:

Abstract

Precise and robust localization is of fundamental importance for robots required to carry out autonomous tasks. Above all, in the case of Unmanned Aerial Vehicles (UAVs), efficiency and reliability are critical aspects in developing solutions for localization due to the limited computational capabilities, payload and power constraints. In this work, we leverage novel research in efficient deep neural architectures for the problem of 6 Degrees of Freedom (6-DoF) pose estimation from single RGB camera images. In particular, we introduce an efficient neural network to jointly regress the position and orientation of the camera with respect to the navigation environment. Experimental results show that the proposed network is capable of retaining similar results with respect to the most popular state of the art methods while being smaller and with lower latency, which are fundamental aspects for real-time robotics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. MobileNetV2 source code. https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

  2. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  3. Araar, O., Aouf, N.: A new hybrid approach for the visual servoing of VTOL UAVs from unknown geometries. In: 22nd Mediterranean Conference on Control and Automation, pp. 1425–1432. IEEE (2014)

    Google Scholar 

  4. Cummins, M., Newman, P.: FAB-MAP: probabilistic localization and mapping in the space of appearance. Int. J. Robot. Res. 27(6), 647–665 (2008)

    Article  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  6. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1026–1034 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  11. Huynh, D.Q.: Metrics for 3d rotations: comparison and analysis. J. Math. Imaging Vis. 35(2), 155–164 (2009)

    Article  MathSciNet  Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  13. Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point clouds to fast location recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2599–2606. IEEE (2009)

    Google Scholar 

  14. Josephson, K., Byrod, M.: Pose estimation with radial distortion and unknown focal length. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2419–2426. IEEE (2009)

    Google Scholar 

  15. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32(5), 922–923 (1976)

    Article  Google Scholar 

  16. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with deep learning. In: Camera Relocalization by Computing Pairwise Relative Poses Using Convolutional Neural Network, pp. 5974–5983 (2017)

    Google Scholar 

  17. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  18. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: IEEE International Conference on Computer Vision, December 2015

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Krizhevsky, A., Hinton, G.: Convolutional deep belief networks on CIFAR-10. Unpublished manuscript 40(7) (2010)

    Google Scholar 

  21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  22. Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized feature matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_57

    Chapter  Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Lu, Y., Xue, Z., Xia, G.S., Zhang, L.: A survey on vision-based UAV navigation. Geo Spat. Inf. Sci. 21(1), 21–32 (2018)

    Article  Google Scholar 

  25. Piasco, N., Sidibé, D., Demonceaux, C., Gouet-Brunet, V.: A survey on visual-based localization: on the benefit of heterogeneous data. Pattern Recognit. 74, 90–109 (2018)

    Article  Google Scholar 

  26. Radwan, N., Valada, A., Burgard, W.: VLocNet++: deep multitask learning for semantic visual localization and odometry. IEEE Robot. Autom. Lett. 3(4), 4407–4414 (2018)

    Article  Google Scholar 

  27. Raguram, R., Frahm, J.-M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_37

    Chapter  Google Scholar 

  28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2011)

    Google Scholar 

  29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  30. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2D-to-3D matching. In: International Conference on Computer Vision, pp. 667–674. IEEE (2011)

    Google Scholar 

  31. Sattler, T., Leibe, B., Kobbelt, L.: Improving image-based localization by active correspondence search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 752–765. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_54

    Chapter  Google Scholar 

  32. Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1744–1756 (2017)

    Article  Google Scholar 

  33. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  34. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2930–2937 (2013)

    Google Scholar 

  35. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  37. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9(1), 16 (2017)

    Article  Google Scholar 

  38. Valada, A., Radwan, N., Burgard, W.: Deep auxiliary learning for visual localization and odometry. In: IEEE International Conference on Robotics and Automation, pp. 6939–6946. IEEE (2018)

    Google Scholar 

  39. Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D.: Image-based localization using LSTMs for structured feature correlation. In: Camera Relocalization by Computing Pairwise Relative Poses Using Convolutional Neural Network, pp. 627–637 (2017)

    Google Scholar 

  40. Weyand, T., Kostrikov, I., Philbin, J.: PlaNet - photo geolocation with convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 37–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_3

    Chapter  Google Scholar 

  41. Wu, J., Ma, L., Hu, X.: Delving deeper into convolutional neural networks for camera relocalization. In: IEEE International Conference on Robotics and Automation, pp. 5644–5651. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Cazzato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cimarelli, C., Cazzato, D., Olivares-Mendez, M.A., Voos, H. (2019). Faster Visual-Based Localization with Mobile-PoseNet. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11679. Springer, Cham. https://doi.org/10.1007/978-3-030-29891-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29891-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29890-6

  • Online ISBN: 978-3-030-29891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics