Abstract
Systems of data recognition and data classification are getting more and more developed. There appear newer algorithms that solve more difficult and complex decision problems. Very good results are obtained using sets of classifiers. The authors in their research focused on certain data characteristics. The characteristics concerns recognition of classes of objects whose features can be grouped. Clusters created in this manner can contribute to better recognition of certain decision classes. One such example is a diagnosis of forecast in the case of acute lymphocytic chronic leukaemia B-CLL type. In this document, the authors present a modified selection method of features of the PCA object. The modification concerns the rotation of objects in relation to decision classes. In addition to grouping similar features using Varimax rotation, a procedure for grouping patients in these PCA groups was developed. Within each PCA, two classifiers - strong and weak ones were built. In the research part, the developed method was compared to the one-stage recognition algorithms known from the literature. The obtained results have a significant contribution to medical diagnostics. They allow to develop a procedure for treatment of B-CLL lymphocytic leukaemia. Making an appropriate diagnosis allows to increase a patient’s survival chance by implementing appropriate treatment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Burduk, R.: Integration base classifiers based on their decision boundary. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 13–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_2
Woźniak, M., Ksieniewicz, P., Cyganek, B., Kasprzak, A., Walkowiak, K.: Active learning classification of drifted streaming data. Procedia Comput. Sci. 80, 1724–1733 (2014)
Krawczyk, B., Ksieniewicz, P., Woźniak, M.: Hyperspectral image analysis based on color channels and ensemble classifier. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 274–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07617-1_25
Zyblewski, P., Ksieniewicz, P., Woźniak, M.: Classifier selection for highly imbalanced data streams with Minority Driven Ensemble. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 626–635. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_57
Kay, N., Hamblin, T., Jelinek, D., et al.: Chronic lymphocytic leukemia. American Society of Hematology, Hematology, pp. 193–213 (2002)
Dmoszyńska, A., Robak, T.: Podstawy hematologii. Wydawnictwo Czelej, Lublin, wyd 2 (2008)
Hallek, M., Cheson, B., Catovsky, D., Caligaris-Cappio, F., Dighiero, G.: Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia (IWCLL) updating the National Cancer Institute-Working Group (NCI-WG) 1996 guidelines, vol. 111, pp. 5446–5456 (2008)
Monserrat, E., Gine, E., Bosch, F.: Redefining prognostic elements in chronic lymphocytic leukemia. Hematol J. 4(suppl. 3), 180–182 (2003)
Hamblin, T.J.: CLL: How many diseases? Hematol J. 4(suppl. 3), 183–186 (2003)
Rai, K.R., Chiorazzi, N.: Determining the clinical course and outcome in chronic lymphocytic leukemia. N. Engl. J. Med. 348, 1797–1799 (2003)
Bosch, F., Villamor, N.: ZAP-70 expression in chronic lymphocytic leukemia: a new parameter for an old disease. Hematologica 88, 724–726 (2003)
Brugiatelli, M., Mannina, D., Neri, S., et al.: Recent update of prognosis and staging of chronic lymphocytic leukemia. Hematol J. 88(suppl. 10), 30–31 (2003)
Grabiński, T.: Metody taksonometrii. Akademia Ekonomiczna, Kraków (1992)
Stanisz, A.: Przystępny kurs statystyki z zastosowaniem Statistica PL na przykładach z medycyny. T. 3: Analizy wielowymiarowe. StatSoft, Kraków (2007)
Fix, E., Hodges, J.L.: Discriminatory analysis. Nonparametric discrimination: consistency properties, Report Number 4, Project Number 21–49-004, 1951, Reprinted in International Statistical Review, 57, pp. 238–247 (1989)
Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, New York (1990)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-3264-1
Quinlan, J.R.: Discovering rules by induction from large collections of examples. In: Expert Systems in the Micro Electronic Age, pp. 168–201. Edinburgh University Press (1979)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees, Wadsworth, Belmont (1984)
Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 15(4), 580–585 (1985)
Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, London (1982)
Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning, pp. 93–128. MIT Press, Cambridge (2006)
Zhang, J., Gong, S.: Action categorization with modified hidden conditional random field. Pattern Recogn. 43, 197–203 (2010)
Acknowledgement
This work was supported by the statutory funds of the Department of Systems and Computer Networks, Faculty of Electronics, Wroclaw University of Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Topolski, M., Topolska, K. (2019). Algorithm for Constructing a Classifier Team Using a Modified PCA (Principal Component Analysis) in the Task of Diagnosis of Acute Lymphocytic Leukaemia Type B-CLL. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)