Abstract
The possibilities offered by the management of huge quantities of equipment and/or networks is attracting a growing number of developers of malware. In this paper, we propose a working methodology for the detection of malicious traffic, based on the analysis of the flow of packets circulating on the network. This objective is achieved through the parameterization of the characteristics of these packages to be analyzed later with supervised learning techniques focused on traffic labeling, so as to enable a proactive response to the large volume of information handled by current filters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amari, S.I., Wu, S.: Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12(6), 783–789 (1999)
Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., Salamatian, K.: Traffic classification on the fly. ACM SIGCOMM Comput. Commun. Rev. 36(2), 23–26 (2006)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Brezo, F.: Detección de tráfico de control de botnets modelizando el flujo de los paquetes de red. Ph.D. thesis, University de Deusto, Febrero 2014
Brezo, F., de la Puerta, J.G., Barroso, D.: BRIANA: Botnet detection Relying on an Intelligent Analysis of Network Architecture. Master’s thesis, University de Deusto, España (2012)
Cho, B., Yu, H., Lee, J., Chee, Y., Kim, I., Kim, S.: Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels. IEEE Trans. Inf Technol. Biomed. 12(2), 247–256 (2008)
Claffy, K.C.: Internet traffic characterization. Ph.D. thesis, University of California, San Diego (1994)
Cooper, G.F., Herskovits, E.: A bayesian method for constructing bayesian belief networks from databases. In: Proceedings of the Seventh conference on Uncertainty in Artificial Intelligence, pp. 86–94. Morgan Kaufmann Publishers Inc. (1991)
Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through simple statistical fingerprinting. ACM SIGCOMM Comput. Commun. Rev. 37(1), 5–16 (2007)
Dewes, C., Wichmann, A., Feldmann, A.: An analysis of internet chat systems. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 51–64. ACM (2003)
Erman, J., Mahanti, A., Arlitt, M.: Byte me: a case for byte accuracy in traffic classification. In: Proceedings of the 3rd Annual ACM Workshop on Mining Network Data, pp. 35–38. ACM (2007)
Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and discriminating between web and peer-to-peer traffic in the network core. In: Proceedings of the 16th International Conference on World Wide Web, pp. 883–892. ACM (2007)
Föllmer, H.: On entropy and information gain in random fields. Probab. Theory Relat. Fields 26(3), 207–217 (1973)
Garner, S.: Weka: the waikato environment for knowledge analysis. In: Proceedings of the 1995 New Zealand Computer Science Research Students Conference, pp. 57–64 (1995)
Geiger, D., Goldszmidt, M., Provan, G., Langley, P., Smyth, P.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)
Haffner, P., Sen, S., Spatscheck, O., Wang, D.: ACAS: automated construction of application signatures. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Mining Network Data, pp. 197–202. ACM (2005)
Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: Is p2p dying or just hiding? [p2p traffic measurement]. In: Global Telecommunications Conference 2004. GLOBECOM 2004, vol. 3, pp. 1532–1538. IEEE. IEEE (2004)
Keralapura, R., Nucci, A., Zhang, Z.L., Gao, L.: Profiling users in a 3G network using hourglass co-clustering. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 341–352. ACM (2010)
Lang, T., Armitage, G., Branch, P., Choo, H.Y.: A synthetic traffic model for half-life. In: Australian Telecommunications Networks & Applications Conference, vol. 2003 (2003)
Lang, T., Branch, P., Armitage, G.: A synthetic traffic model for quake3. In: Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 233–238. ACM (2004)
Lobo, J.M., Jiménez-Valverde, A., Real, R.: AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008)
Madhukar, A., Williamson, C.: A longitudinal study of p2p traffic classification. In: 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems 2006. MASCOTS 2006, pp. 179–188. IEEE (2006)
Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)
Mattar, K., Sridharan, A., Zang, H., Matta, I., Bestavros, A.: TCP over CDMA2000 networks: a cross-layer measurement study. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 94–104. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71617-4_10
McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow clustering using machine learning techniques. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 205–214. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24668-8_21
Moore, A.W., Papagiannaki, K.: Toward the accurate identification of network applications. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41–54. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31966-5_4
Moore, K.: 71% of online adults now use video-sharing sites. Pew Internet and American Life Project (2011)
Nguyen, T.T., Armitage, G.: Training on multiple sub-flows to optimise the use of machine learning classifiers in real-world IP networks. In: Proceedings 2006 31st IEEE Conference on Local Computer Networks, pp. 369–376. IEEE (2006)
Paxson, V.: Empirically derived analytic models of wide-area TCP connections. IEEE/ACM Trans. Networking (TON) 2(4), 316–336 (1994)
Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31(23), 2435–2463 (1999)
Pentikousis, K., Palola, M., Jurvansuu, M., Perala, P.: Active goodput measurements from a public 3G/UMTS network. IEEE Commun. Lett. 9(9), 802–804 (2005)
Powers, D.: Evaluation: From precision, recall and f-factor to ROC, informedness, markedness & correlation (Technical report). Adelaide, Australia (2007)
Quinlan, J.: C4.5: Programs for Machine Learning. Morgan kaufmann, San Mateo (1993)
Reichl, P., Umlauft, M.: Project WISQY: a measurement-based end-to-end application-level performance comparison of 2.5G and 3G networks. In: Wireless Telecommunications Symposium 2005, pp. 9–14. IEEE (2005)
Roesch, M., et al.: Snort: lightweight intrusion detection for networks. In: LISA, vol. 99, pp. 229–238 (1999)
Roughan, M., Sen, S., Spatscheck, O., Duffield, N.: Class-of-service mapping for QOS: a statistical signature-based approach to IP traffic classification. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 135–148. ACM (2004)
Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings of the 13th International Conference on World Wide Web, pp. 512–521. ACM (2004)
Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine learning methods for predicting fault proneness models. Int. J. Comput. Appl. Technol. 35(2), 183–193 (2009)
Üstün, B., Melssen, W.J., Buydens, L.M.: Facilitating the application of support vector regression by using a universal pearson vii function based kernel. Chemometr. Intell. Lab. Syst. 81(1), 29–40 (2006)
Willkomm, D., Machiraju, S., Bolot, J., Wolisz, A.: Primary users in cellular networks: a large-scale measurement study. In: 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks 2008. DySPAN 2008, pp. 1–11. IEEE (2008)
Zeilenga, K.D.: Internet assigned numbers authority (IANA) considerations for the lightweight directory access protocol (LDAP) (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
de la Puerta, J.G., Pastor-López, I., Sanz, B., Bringas, P.G. (2019). Network Traffic Analysis for Android Malware Detection. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)