Testing Modified Confusion Entropy as Split Criterion for Decision Trees | SpringerLink
Skip to main content

Testing Modified Confusion Entropy as Split Criterion for Decision Trees

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11734))

Included in the following conference series:

  • 1484 Accesses

Abstract

Confusion Entropy (CEN) has been proposed as a performance measure for classification showing a better discrimination against other metrics. Many works use CEN for other purposes. Recently, an improvement in the definition of CEN has been proposed, a modified CEN (MCEN). The aim of this work is to review a previous work based on a classification tree that uses CEN as a pruning criterion, replacing this criterion with the newly defined MCEN metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/.

  2. 2.

    https://github.com/barisesmer/C4.5.

References

  1. Delgado, R., Núñez-González, J.D.: Enhancing confusion entropy as measure for evaluating classifiers. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Sáez, J.A., Quintián, H., Corchado, E. (eds.) SOCO’18-CISIS’18-ICEUTE’18 2018. AISC, vol. 771, pp. 79–89. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94120-2_8

    Chapter  Google Scholar 

  2. Delgado, R., Núñez-González, J.D.: Enhancing confusion entropy (CEN) for binary and multiclass classification. PLoS ONE 14(1), e0210264 (2019)

    Article  Google Scholar 

  3. Jin, H., Wang, X.-N., Gao, F., Li, J., Wei, J.-M.: Learning decision trees using confusion entropy. In: 2013 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 2, pp. 560–564. IEEE (2013)

    Google Scholar 

  4. Jurman, G., Furlanello, C.: A unifying view for performance measures in multi-class prediction. arXiv preprint arXiv:1008.2908 (2010)

  5. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (2014)

    Google Scholar 

  6. Roumani, Y.F., May, J.H., Strum, D.P., Vargas, L.G.: Classifying highly imbalanced ICU data. Health Care Manage. Sci. 16(2), 119–128 (2013)

    Article  Google Scholar 

  7. Roumani, Y.F., Roumani, Y., Nwankpa, J.K., Tanniru, M.: Classifying readmissions to a cardiac intensive care unit. Ann. Oper. Res. 263(1–2), 429–451 (2018)

    Article  MathSciNet  Google Scholar 

  8. Salari, N., Shohaimi, S., Najafi, F., Nallappan, M., Karishnarajah, I.: A novel hybrid classification model of genetic algorithms, modified k-nearest neighbor and developed backpropagation neural network. PLoS ONE 9(11), e112987 (2014)

    Article  Google Scholar 

  9. Sigdel, M., Aygün, R.S.: Pacc - a discriminative and accuracy correlated measure for assessment of classification results. In: Perner, P. (ed.) MLDM 2013. LNCS (LNAI), vol. 7988, pp. 281–295. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39712-7_22

    Chapter  Google Scholar 

  10. Sublime, J., Matei, B., Cabanes, G., Grozavu, N., Bennani, Y., Cornuéjols, A.: Entropy based probabilistic collaborative clustering. Pattern Recogn. 72, 144–157 (2017)

    Article  Google Scholar 

  11. Wei, J.-M., Yuan, X.-J., Qing-Hua, H., Wang, S.-Q.: A novel measure for evaluating classifiers. Expert Syst. Appl. 37(5), 3799–3809 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The work in this paper has been partially supported by FEDER funds for the MINECO project TIN2017-85827-P, and projects KK-2018/00071 and KK-2018/00082 of the Elkartek 2018 funding program of the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nuñez-Gonzalez, J.D., Sá, A.G.d., Graña, M. (2019). Testing Modified Confusion Entropy as Split Criterion for Decision Trees. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics