Abstract
Confusion Entropy (CEN) has been proposed as a performance measure for classification showing a better discrimination against other metrics. Many works use CEN for other purposes. Recently, an improvement in the definition of CEN has been proposed, a modified CEN (MCEN). The aim of this work is to review a previous work based on a classification tree that uses CEN as a pruning criterion, replacing this criterion with the newly defined MCEN metric.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Delgado, R., Núñez-González, J.D.: Enhancing confusion entropy as measure for evaluating classifiers. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Sáez, J.A., Quintián, H., Corchado, E. (eds.) SOCO’18-CISIS’18-ICEUTE’18 2018. AISC, vol. 771, pp. 79–89. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94120-2_8
Delgado, R., Núñez-González, J.D.: Enhancing confusion entropy (CEN) for binary and multiclass classification. PLoS ONE 14(1), e0210264 (2019)
Jin, H., Wang, X.-N., Gao, F., Li, J., Wei, J.-M.: Learning decision trees using confusion entropy. In: 2013 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 2, pp. 560–564. IEEE (2013)
Jurman, G., Furlanello, C.: A unifying view for performance measures in multi-class prediction. arXiv preprint arXiv:1008.2908 (2010)
Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (2014)
Roumani, Y.F., May, J.H., Strum, D.P., Vargas, L.G.: Classifying highly imbalanced ICU data. Health Care Manage. Sci. 16(2), 119–128 (2013)
Roumani, Y.F., Roumani, Y., Nwankpa, J.K., Tanniru, M.: Classifying readmissions to a cardiac intensive care unit. Ann. Oper. Res. 263(1–2), 429–451 (2018)
Salari, N., Shohaimi, S., Najafi, F., Nallappan, M., Karishnarajah, I.: A novel hybrid classification model of genetic algorithms, modified k-nearest neighbor and developed backpropagation neural network. PLoS ONE 9(11), e112987 (2014)
Sigdel, M., Aygün, R.S.: Pacc - a discriminative and accuracy correlated measure for assessment of classification results. In: Perner, P. (ed.) MLDM 2013. LNCS (LNAI), vol. 7988, pp. 281–295. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39712-7_22
Sublime, J., Matei, B., Cabanes, G., Grozavu, N., Bennani, Y., Cornuéjols, A.: Entropy based probabilistic collaborative clustering. Pattern Recogn. 72, 144–157 (2017)
Wei, J.-M., Yuan, X.-J., Qing-Hua, H., Wang, S.-Q.: A novel measure for evaluating classifiers. Expert Syst. Appl. 37(5), 3799–3809 (2010)
Acknowledgments
The work in this paper has been partially supported by FEDER funds for the MINECO project TIN2017-85827-P, and projects KK-2018/00071 and KK-2018/00082 of the Elkartek 2018 funding program of the Basque Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Nuñez-Gonzalez, J.D., Sá, A.G.d., Graña, M. (2019). Testing Modified Confusion Entropy as Split Criterion for Decision Trees. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)