Abstract
Computer vision methods are widely applied in health assistance and medical diagnostics. Photoplethysmography (PPG) is one such method that can be used for contactless estimation of heart rate through the analysis of slight variations of skin color which are caused by changes in the blood volume in vessels. These changes of skin color registered by a camera are called color signal. According to recent studies some PPG methods can be applied on video data recorded by common web-cameras with sufficient accuracy, so they are recognized as potentially applicable for long-term health monitoring in house or office conditions. In this study, we evaluate the accuracy of commonly used signal processing methods for webcam-based PPG as well as novel modifications of these methods in various combinations with preprocessing and postprocessing filtering algorithms. In particular, the Extended Fourier analysis that is based on Gaussian smoothing and temporal averaging of Fourier spectra was applied to estimate heart rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Measur. 28(3), R1 (2007)
Ans, B., Herault, J., Jutten, C.: Adaptive neural architectures: detection of primitives. In: Proceedings of COGNITIVA 1985, pp 593–597 (1985)
Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Robust discriminative response map fitting with constrained local models. In: CVPR, pp. 3444–3451 (2013). https://doi.org/10.1109/CVPR.2013.442
Balakrishnan, G., Durand, F., Guttag, J.: Detecting pulse from head motions in video. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3430–3437 (2013). https://doi.org/10.1109/CVPR.2013.440
Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade Feature Tracker Description of the algorithm. Intel Corporation, Technical report (2001)
Emrah Tasli, H., Gudi, A., den Uyl, M.: Remote PPG based vital sign measurement using adaptive facial regions. IEEE ICIP 2014, 1410–1414 (2015). https://doi.org/10.1109/ICIP.2014.7025282
Haan, G.D., Jeanne, V.: Robust pulse-rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60(10), 1–9 (2013)
Holton, B., Mannapperuma, K., Lesniewski, P., Thomas, J.: Signal recovery in imaging photoplethysmography. Physiol. Measur. 34(11), 1499–1511 (2013). https://doi.org/10.1088/0967-3334/34/11/1499
Irani, R., Nasrollahi, K., Moeslund, T.B.: Improved pulse detection from head motions using DCT. In: IIIE VISAPP, vol. 3, pp. 118–124 (2014)
Kopeliovich, M., Petrushan, M., Shaposhnikov, D.: Approximation-based transformation of color signal for heart rate estimation with a webcam. Pattern Recogn. Image Anal. 28(4), 646–651 (2018)
Kopeliovich, M.V., Petrushan, M.V.: Optimal facial areas for webcam-based photoplethysmography. Pattern Recogn. Image Anal. 26(1), 150–154 (2016). https://doi.org/10.1134/S1054661816010120
Kumar, M., Veeraraghavan, A., Sabharwal, A.: DistancePPG: robust non-contact vital signs monitoring using a camera. Biomed. Opt. Express 6(5), 1565 (2015). https://doi.org/10.1364/BOE.6.001565
Li, X., Chen, J., Zhao, G., Pietik, M.: Remote heart rate measurement from face videos under realistic situations. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2014)
Lienhart, R., Maydt, J.: An extended set of Haar- like features for rapid object detection. In: ICIP, pp. 900–903 (2002)
van Luijtelaar, R., Wang, W., Stuijk, S., de Haan, G.: Automatic ROI detection for camera-based pulse-rate measurement. In: Asian Conference on Computer Vision, pp 360–374 (2014). https://doi.org/10.1007/978-3-319-16631-5_27
Macwan, R., Benezeth, Y., Mansouri, A.: Remote photoplethysmography with constrained ICA using periodicity and chrominance constraints. BioMed. Eng. Online 17(1), 22 (2018). https://doi.org/10.1186/s12938-018-0450-3
McDuff, D.: Advancements in remote physiological measurement and applications in human- computer interaction. In: SPIE, vol. 10251, p. 102510V (2017). https://doi.org/10.1117/12.2276026
McDuff, D., Blackford, E.B., Estepp, J.: Fusing partial camera signals for non-contact pulse rate variability measurement. IEEE Trans. Biomed. Eng. 1 (2017). https://doi.org/10.1109/TBME.2017.2771518
Mcintyre, S., Eklund, J.M., Collins, C.: Using visual analytics of heart rate variation to aid in diagnostics. In: AVI, pp. 20–27 (2016)
OpenCV: OpenCV 2.4.6.0. (2013). http://docs.opencv.org/2.4.6
Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901)
Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011). https://doi.org/10.1109/TBME.2010.2086456
Robergs, R.A., Landwehr, R.: The surprising history of the “HRmax=220-age” equation. J. Exerc. Physiol. 1971(1), 1–10, (2002). ISSN 1097-9751
Rundo, F., Conoci, S., Ortis, A., Battiato, S.: An advanced bio-inspired photoplethysmography (PPG) and ECG pattern recognition system for medical assessment. Sensors 18, 405 (2018). https://doi.org/10.3390/s18020405
Rustand, Å.: Ambient-light photoplethysmography. Doctoral dissertation, master’s thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications (2012)
Shelley, K., Shelley, S.: Pulse oximeter waveform: photoelectric plethysmography. Clin. Monit. 420–428 (2001). https://www.researchgate.net/profile/Kirk_Shelley/publication/224765089_Pulse_Oximeter_Waveform_Photoelectric_Plethysmography/links/0c960529365c4977a4000000.pdf. Carol Lake, R Hines, and C Blitt, Eds: WB Saunders Company
Shi, J., Tomasi, C.: Good features to track. In: CVPR 1994, Seatle (1994)
Sun, Y., Papin, C., Azorin-Peris, V., Kalawsky, R., Greenwald, S., Hu, S.: Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam. J. Biomed. Optics 17(3), 037005 (2012). https://doi.org/10.1117/1.JBO.17.3.037005
Teplov, V., Nippolainen, E., Makarenko, A.A., Giniatullin, R., Kamshilin, A.A.: Ambiguity of mapping the relative phase of blood pulsations. Biomed. Opt. Express 5(9), 3123–39 (2014). https://doi.org/10.1364/BOE.5.003123
Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical report, CMU-CS-91-132 (1991)
Tulyakov, S., Alameda-pineda, X., Ricci, E., Yin, L., Cohn, J.F., Sebe, N., Sommarive, V., Kessler, F.B., Sommarive, V.: Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In: CVPR, pp. 2396–2404 (2016)
Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21434–21445 (2008). https://doi.org/10.1364/OE.16.021434
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. CVPR 1, 511–518 (2001)
Wang, W., Stuijk, S., Haan, G.D.: A novel algorithm for remote photoplethysmography : spatial subspace rotation. IEEE Trans. Biomed. Eng. 63(9), 1974–1984 (2016)
Wieringa, F.P., Mastik, F., Van Der Steen, A.F.W.: Contactless multiple wavelength photoplethysmographic imaging: a first step toward “spO 2 camera” technology. Ann. Biomed. Eng. 33(8), 1034–1041 (2005). https://doi.org/10.1007/s10439-005-5763-2
Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31(4), 1–8 (2012). https://doi.org/10.1145/2185520.2335416
Zaproudina, N., Teplov, V., Nippolainen, E., Lipponen, J.A., Kamshilin, A.A., Närhi, M., Karjalainen, P.A., Giniatullin, R.: Asynchronicity of facial blood perfusion in migraine. PLoS ONE 8(12) (2013). https://doi.org/10.1371/journal.pone.0080189
Zaunseder, S., Trumpp, A., Wedekind, D., Malberg, H.: Cardiovascular assessmentby imaging photoplethysmography - a review. Biomed. Eng./Biomedizinische Technik 63 (2018). https://doi.org/10.1515/bmt-2017-0119
Acknowledgments
The authors want to acknowledge the director of supporting project, Dmitry Shaposhnikov, a leading researcher at the Center of Neurotechnologies.
Funding
The work is supported by the Russian Ministry for Education and Science, project no. 2.955.2017/4.6 “Development of the hardware and software system for monitoring the attention level and psychoemotional state of pilots and dispatching personnel to improve flight safety”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kopeliovich, M., Petrushan, M. (2020). Color Signal Processing Methods for Webcam-Based Heart Rate Evaluation. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-29513-4_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29512-7
Online ISBN: 978-3-030-29513-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)