Abstract
Mimetic design means using a source in the natural or artificial worlds as an inspiration for technological solutions. It is based around the abstraction of the relevant operating principles in a source domain. This means that one must be able to identify the correct level of analysis and extract the relevant patterns. How this should be done is based on the type of source. From a mimetic perspective, if the design goal is intelligent technology, an obvious source of inspiration is human information processing, which we have called cognitive mimetics. This article offers some conceptual clarification on the nature of cognitive mimetics by contrasting it with biomimetics in the context of intelligent technology. We offer a two-part ontology for cognitive mimetics, suggest an approach and discuss possible implications for AI in general.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Holyoak, K.J., Thagard, P.: Mental Leaps: Analogy in Creative Thought. The MIT Press, Cambridge (1995)
Kujala, T., Saariluoma, P.: Cognitive mimetics for designing intelligent technologies. Adv. Hum. Comput. Interact. (2018)
Saariluoma, P., Kujala, T., Karvonen, A., Ahonen M.: Cognitive mimetics - main ideas. In: Proceedings on the International Conference on Artificial Intelligence (ICAI), pp. 202–206. The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2018)
Saariluoma, P., Karvonen, A., Wahlström, M., Happonen, K., Puustinen, R., Kujala, T.: Challenge of tacit knowledge in acquiring information in cognitive mimetics. In: Karwowski, W., Ahram, T. (eds.) Intelligent Human Systems Integration 2019. IHSI 2019. Advances in Intelligent Systems and Computing, vol. 903. Springer (2019)
Simon, H.A.: The Sciences of the Artificial. The MIT Press, Cambridge (1981)
Dym, C.L., Brown, D.C.: Engineering Design: Representation and Reasoning. Cambridge University Press, Cambridge (2012)
Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic Approach. Springer, Berlin (2007)
Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, New York (2011)
Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Oxford (1972)
Saariluoma, P.: Chess Players’ Thinking. Routledge, London (1995)
Duncker, K.: On problem-solving. Psychological Monographs, vol. 58, pp. 1–113 (1945)
Wertheimer, M.: Productive Thinking. Greenwood, Westport (1945)
Fayemi, P.E., Wanieck, K., Zollfrank, C., Maranzana, N., Aoussat, A.: Biomimetics: process, tools and practice. Bioinspiration Biomimetics 12(1) (2017)
Drack, M., Limpinsel, M., de Bruyn, G., Nebelsick, J., Betz, O.: Towards a theoretical clarification of biomimetics using conceptual tools from engineering design. Bioinspiration Biomimetics 13 (2017)
Vincent, J.F., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.K.: Biomimetics: its practice and theory. J. Roy. Soc. Interface 3, 471–482 (2006)
Floridi, L.: The logic of design as a conceptual logic of information. Mind. Mach. 27(3), 495–519 (2017)
Bonser, R.H.C.: Patented biologically-inspired technological innovations: a twenty year view. J. Bionic Eng. 3(1), 39–41 (2006)
Lepora, N.F., Verschure, P., Prescott, T.J.: The state of the art in biomimetics. Bioinspiration Biomimetics 8 (2013)
Kar, A.K.: Bio inspired computing–a review of algorithms and scope of applications. Expert Syst. Appl. 59, 20–32 (2016)
McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)
Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press (2005)
Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017)
Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. In: Proceedings of the London Mathematical Society, vol. 42, pp. 230–265, July 1936
De Groot, A.D.: Thought and Choice in Chess. Mounton, The Hague (1965)
Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Philos. Psychol. 407 (1975)
Buchanan, B.G., Davis, R., Feigenbaum, E.A.: Expert systems: a perspective from computer science. In: Ericsson, K.A, Hoffman, R.R., Kozbelt, A., Williams, A.M. (eds.) The Cambridge Handbook of Expertise and Expert Performance, 2nd edn., pp. 84–104. Cambridge University Press (2018)
Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40 (2017)
Nagel, J., Schmidt, L., Born, W.: Establishing analogy categories for bio-inspired design. Designs 2(4), 47 (2018)
Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036 (2004)
Price, C.J., Friston, K.J.: Functional ontologies for cognition: the systematic definition of structure and function. Cogn. Neuropsychol. 22(3–4), 262–275 (2005)
Saariluoma, P.: Foundational Analysis: Presuppositions in Experimental Psychology. Routledge, London (1997)
Ericsson, K.A., Lehmann, A.C.: Expert and exceptional performance: evidence of maximal adaptation to task constraints. Annu. Rev. Psychol. 47(1), 273–305 (1996)
Russell, S.: Rationality and intelligence: a brief update. In: Fundamental Issues of Artificial Intelligence, pp. 7–28. Springer (2016)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Karvonen, A., Kujala, T., Saariluoma, P. (2020). Types of Mimetics for the Design of Intelligent Technologies. In: Ahram, T., Karwowski, W., Pickl, S., Taiar, R. (eds) Human Systems Engineering and Design II. IHSED 2019. Advances in Intelligent Systems and Computing, vol 1026. Springer, Cham. https://doi.org/10.1007/978-3-030-27928-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-27928-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27927-1
Online ISBN: 978-3-030-27928-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)