Non-Uniformly Sound Certificates with Applications to Concurrent Zero-Knowledge | SpringerLink
Skip to main content

Non-Uniformly Sound Certificates with Applications to Concurrent Zero-Knowledge

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11694))

Included in the following conference series:

Abstract

We introduce the notion of non-uniformly sound certificates: succinct single-message (unidirectional) argument systems that satisfy a “best-possible security” against non-uniform polynomial-time attackers. In particular, no polynomial-time attacker with s bits of non-uniform advice can find significantly more than s accepting proofs for false statements. Our first result is a construction of non-uniformly sound certificates for all \(\mathbf{NP }\) in the random oracle model, where the attacker’s advice can depend arbitrarily on the random oracle.

We next show that the existence of non-uniformly sound certificates for \(\mathbf{P }\) (and collision resistant hash functions) yields a public-coin constant-round fully concurrent zero-knowledge argument for \(\mathbf{NP } \).

Supported in part by NSF Award CNS-1561209, NSF Award SATC-1617676, NSF Award SATC-1704788, and AFOSR Award FA9550-15-1-0262.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS, pp. 106–115 (2001)

    Google Scholar 

  2. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)

    Article  MathSciNet  Google Scholar 

  3. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS, pp. 116–125 (2001)

    Google Scholar 

  4. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowledge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)

    Article  MathSciNet  Google Scholar 

  5. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J. Comput. 37(2), 380–400 (2007)

    Article  MathSciNet  Google Scholar 

  6. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision resistant hash functions and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 133–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_5

    Chapter  Google Scholar 

  7. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for keyless hash functions. In: 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 671–684 (2018)

    Google Scholar 

  8. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commitments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 209–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_8

    Chapter  Google Scholar 

  9. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

    Article  MathSciNet  Google Scholar 

  10. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: 32nd Annual ACM Symposium on Theory of Computing, STOC, pp. 235–244 (2000)

    Google Scholar 

  11. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1), 1–47 (2002)

    Article  MathSciNet  Google Scholar 

  12. Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in the global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 80–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_5

    Chapter  Google Scholar 

  13. Chongchitmate, W., Ostrovsky, R., Visconti, I.: Resettably-sound resettable zero knowledge in constant rounds. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 111–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_4

    Chapter  Google Scholar 

  14. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from p-certificates. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 50–59 (2013)

    Google Scholar 

  15. Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from indistinguishability obfuscation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 287–307. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_14

    Chapter  Google Scholar 

  16. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_9

    Chapter  Google Scholar 

  17. Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_30

    Chapter  Google Scholar 

  18. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 251–260 (2009)

    Google Scholar 

  19. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM (JACM) 51(6), 851–898 (2004)

    Article  MathSciNet  Google Scholar 

  20. Dwork, C., Sahai, A.: Concurrent zero-knowledge: reducing the need for timing constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 442–457. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055746

    Chapter  Google Scholar 

  21. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 416–426. ACM (1990)

    Google Scholar 

  22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  23. Fortnow, L.: Kolmogorov complexity and computational complexity. Complexity of Computations and Proofs. Quaderni di Matematica, vol. 13 (2004)

    Google Scholar 

  24. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_17

    Chapter  Google Scholar 

  25. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic constructions. In: 41st Annual Symposium on Foundations of Computer Science, FOCS, pp. 305–313 (2000)

    Google Scholar 

  26. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: 43rd ACM Symposium on Theory of Computing, STOC, pp. 99–108 (2011)

    Google Scholar 

  27. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  28. Goldreich, O.: Concurrent zero-knowledge with timing, revisited. In: 34th Annual ACM Symposium on Theory of Computing, STOC, pp. 332–340 (2002)

    Google Scholar 

  29. Goldreich, O., Håstad, J.: On the complexity of interactive proofs with bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)

    Article  MathSciNet  Google Scholar 

  30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  31. Goyal, V.: Non-black-box simulation in the fully concurrent setting. In: Symposium on Theory of Computing Conference, STOC, pp. 221–230. ACM (2013)

    Google Scholar 

  32. Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Constant-round concurrent zero knowledge in the bounded player model. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 21–40. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_2

    Chapter  MATH  Google Scholar 

  33. Gupta, D., Sahai, A.: On constant-round concurrent zero-knowledge from a knowledge assumption. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 71–88. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2_5

    Chapter  Google Scholar 

  34. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

    Article  MathSciNet  Google Scholar 

  35. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness extractors from parvaresh-vardy codes. J. ACM 56(4), 20:1–20:34 (2009)

    Article  MathSciNet  Google Scholar 

  36. Haitner, I., Ishai, Y., Omri, E., Shaltiel, R.: Parallel hashing via list recoverability. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 173–190. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_9

    Chapter  Google Scholar 

  37. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  Google Scholar 

  38. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 723–732. ACM (1992)

    Google Scholar 

  39. Kilian, J.: Improved efficient arguments. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_25

    Chapter  Google Scholar 

  40. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-loalgorithm rounds. In: 33rd Annual ACM Symposium on Theory of Computing, STOC, pp. 560–569 (2001)

    Google Scholar 

  41. Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of search problems: Ramsey and graph property testing. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 622–632 (2017)

    Google Scholar 

  42. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids: dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 162–194. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_6

    Chapter  Google Scholar 

  43. Komargodski, I., Yogev, E.: On distributional collision resistant hashing. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 303–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_11

    Chapter  Google Scholar 

  44. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  45. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)

    Article  MathSciNet  Google Scholar 

  46. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)

    Article  Google Scholar 

  47. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simulation and four message concurrent zero knowledge for NP. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 638–667. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_25

    Chapter  Google Scholar 

  48. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10

    Chapter  Google Scholar 

  49. Pass, R., Rosen, A., Tseng, W.D.: Public-coin parallel zero-knowledge for NP. J. Cryptol. 26(1), 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  50. Pass, R., Tseng, W.D., Venkitasubramaniam, M.: Concurrent zero knowledge, revisited. J. Cryptol. 27(1), 45–66 (2014)

    Article  Google Scholar 

  51. Pass, R., Tseng, W.D., Wikström, D.: On the composition of public-coin zero-knowledge protocols. SIAM J. Comput. 40(6), 1529–1553 (2011)

    Article  MathSciNet  Google Scholar 

  52. Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_30

    Chapter  Google Scholar 

  53. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: 43rd Symposium on Foundations of Computer Science FOCS, pp. 366–375. IEEE Computer Society (2002)

    Google Scholar 

  54. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_29

    Chapter  Google Scholar 

  55. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cody Freitag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Freitag, C., Komargodski, I., Pass, R. (2019). Non-Uniformly Sound Certificates with Applications to Concurrent Zero-Knowledge. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11694. Springer, Cham. https://doi.org/10.1007/978-3-030-26954-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26954-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26953-1

  • Online ISBN: 978-3-030-26954-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics