Abstract
Leakage certification aims at guaranteeing that the statistical models used in side-channel security evaluations are close to the true statistical distribution of the leakages, hence can be used to approximate a worst-case security level. Previous works in this direction were only qualitative: for a given amount of measurements available to an evaluation laboratory, they rated a model as “good enough” if the model assumption errors (i.e., the errors due to an incorrect choice of model family) were small with respect to the model estimation errors. We revisit this problem by providing the first quantitative tools for leakage certification. For this purpose, we provide bounds for the (unknown) Mutual Information metric that corresponds to the true statistical distribution of the leakages based on two easy-to-compute information theoretic quantities: the Perceived Information, which is the amount of information that can be extracted from a leaking device thanks to an estimated statistical model, possibly biased due to estimation and assumption errors, and the Hypothetical Information, which is the amount of information that would be extracted from an hypothetical device exactly following the model distribution. This positive outcome derives from the observation that while the estimation of the Mutual Information is in general a hard problem (i.e., estimators are biased and their convergence is distribution-dependent), it is significantly simplified in the case of statistical inference attacks where a target random variable (e.g., a key in a cryptographic setting) has a constant (e.g., uniform) probability. Our results therefore provide a general and principled path to bound the worst-case security level of an implementation. They also significantly speed up the evaluation of any profiled side-channel attack, since they imply that the estimation of the Perceived Information, which embeds an expensive cross-validation step, can be bounded by the computation of a cheaper Hypothetical Information, for any estimated statistical model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We consider so-called noisy leakages, where the adversary can observe a noisy function of secret variables [28].
- 3.
- 4.
The second equality is turned into an inequality in case of non-bijective S-boxes.
- 5.
We use \(n_t=n\), which leads to good estimations since the number of measurements needed to estimate a model is usually larger than the number of leakages needed to recover the key with a well-estimated model [32].
References
https://github.com/obronchain/Leakage_Certification_Revisited
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.: Leakage certification revisited: bounding model errors in side-channel security evaluations. IACR Cryptology ePrint Archive 2019, p. 132 (2019)
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_33
Chothia, T., Guha, A.: A statistical test for information leaks using continuous mutual information. In: Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27–29 June 2011, pp. 177–190. IEEE Computer Society (2011)
Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)
Domingos, P.M.: A unified bias-variance decomposition and its applications. In: Langley, P. (ed) Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, 29 June–2 July 2000, pp. 231–238. Morgan Kaufmann (2000)
Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen and Oswald [25], pp. 423–440
Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_16
Durvaux, F., Standaert, F., Pozo, S.M.D.: Towards easy leakage certification: extended version. J. Cryptographic Eng. 7, 129–147 (2017)
Durvaux, F., Standaert, F., Veyrat-Charvillon, N.: How to certify the leakage of a chip? In: Nguyen and Oswald [25], pp. 459–476
Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_3
Guilley, S., Heuser, A., Rioul, O., Standaert, F.: Template attacks, optimal distinguishers and the perceived information metric, Cryptarchi (2015). https://perso.uclouvain.be/fstandae/PUBLIS/162.pdf
Guo, Q., Grosso, V., Standaert, F.: Modeling soft analytical side-channel attacks from a coding theory viewpoint. IACR Cryptology ePrint Archive 2018, p. 498 (2018)
Lange, J., Massart, C., Mouraux, A., Standaert, F.: Side-channel attacks against the human brain: the PIN code case study (extended version). Brain Inform. 5, 12 (2018)
Lerman, L., Veshchikov, N., Markowitch, O., Standaert, F.: Start simple and then refine: bias-variance decomposition as a diagnosis tool for leakage profiling. IEEE Trans. Comput. 67, 268–283 (2018)
Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2_18
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards, 1st edn. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-38162-6
Mangard, S., Oswald, E., Standaert, F.: One for all - all for one: unifying standard differential power analysis attacks. IET Inf. Secur. 5, 100–110 (2011)
Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_13
Massart, C., Standaert, F.: Revisiting location privacy from aside-channel analysis viewpoint (extended version). IACR Cryptology ePrint Archive 2019, p. 467 (2019)
Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak information? an a priori statistical power analysis of leakage detection tests. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_25
Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5
Paninski, L.: Estimation of entropy and mutual information. Neural Comput. 15, 1191–1253 (2003)
Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank estimation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_4
Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_9
Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_8
Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study of power variability issues and side-channel attacks for nanoscale devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_8
Reparaz, O., Gierlichs, B., Verbauwhede, I.: Fast leakage assessment. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 387–399. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_19
Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_30
Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26
Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key enumeration algorithm and its application to side-channel attacks. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_25
Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_15
Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive chosen-message side-channel attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2_12
Acknowledgments
The authors thank Philippe Delsarte for stimulating discussions and Carolyn Whitnall for useful feedback on the HI/PI definitions and comments on early versions of this manuscript. Julien Hendrickx holds a WBI.World excellence fellowship. François-Xavier Standaert is a Senior Research Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the EU through the ERC project SWORD (Consolidator Grant 724725) and the H2020 project REASSURE, and by a Concerted Research Action of the “Communauté Française de Belgique”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, FX. (2019). Leakage Certification Revisited: Bounding Model Errors in Side-Channel Security Evaluations. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11692. Springer, Cham. https://doi.org/10.1007/978-3-030-26948-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-26948-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26947-0
Online ISBN: 978-3-030-26948-7
eBook Packages: Computer ScienceComputer Science (R0)