Chemical Reaction Networks and Stochastic Local Search | SpringerLink
Skip to main content

Chemical Reaction Networks and Stochastic Local Search

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11648))

Included in the following conference series:

Abstract

Stochastic local search can be an effective method for solving a wide variety of optimization and constraint satisfaction problems. Here I show that some stochastic local search algorithms map naturally to stochastic chemical reaction networks. This connection highlights new ways in which stochasticity in chemical reaction networks can be used for search and thus for finding solutions to problems. The central example is a chemical reaction network construction for solving Boolean formula satisfiability problems. Using an efficient general-purpose stochastic chemical reaction network simulator, I show that direct simulation of the networks proposed here can be more efficient, in wall-clock time, than a somewhat outdated but industrial-strength commercial satisfiability solver. While not of use for practical computing, the constructions emphasize that exploiting the stochasticity inherent in chemical reaction network dynamics is not inherently inefficient – and indeed I propose that stochastic local search could be an important aspect of biological computation and should be exploited when engineering future artificial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The sequence of reactions identified in the proof will have a positive probability of occurring next, specifically, at least \((12M+L)^{-(N+M)}\). This provides an exponential bound on the expected time to halt, to wit, less than \((12M+L)^{N+M}/k+(N+M)/k\). But is that useful?

  2. 2.

    A straightforward adaptation of the previous argument works for a closely related CRN that is identical to WalkSATCRN[f] except that species tryX0 and tryX1 are conflated as tryX for each variable X. This CRN should work similarly, as the main difference is merely that a variable being flipped now might spontaneously revert. But it is not the CRN that I simulated.

References

  1. Simonis, H.: Sudoku as a constraint problem. In: Proceedings of the 4th International Workshop on Modelling and Reformulating Constraint Satisfaction Problems, vol. 12, pp. 13–27 (2005)

    Google Scholar 

  2. Lynce, I., Ouaknine, J.: Sudoku as a SAT problem. In: Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics (AIMATH) (2006)

    Google Scholar 

  3. Hopfield, J.J.: Searching for memories, Sudoku, implicit check bits, and the iterative use of not-always-correct rapid neural computation. Neural Comput. 20, 1119–1164 (2008)

    Article  MathSciNet  Google Scholar 

  4. Jonke, Z., Habenschuss, S., Maass, W.: Solving constraint satisfaction problems with networks of spiking neurons. Front. Neurosci. 10, 118 (2016)

    Article  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  6. Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. Logic Program. 19, 503–581 (1994)

    Article  MathSciNet  Google Scholar 

  7. Vardi, M.Y.: Boolean satisfiability theory and engineering. Commun. ACM 57, 5 (2014)

    Google Scholar 

  8. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver competitions. AI Mag. 33, 89–92 (2012)

    Article  Google Scholar 

  9. Balyo, T., Heule, M.J.H., Jarvisalo, M.: SAT competition 2016: recent developments. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  11. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. Cliques, Color. Satisf. 26, 521–532 (1993)

    Article  Google Scholar 

  12. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the 12th National Conference on Artificial Intelligence, vol. 94, pp. 337–343. MIT Press (1994)

    Google Scholar 

  13. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  14. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. Foundations of Artificial Intelligence 3, 89–134 (2008)

    Google Scholar 

  15. Kirschner, M., Mitchison, T.: Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986)

    Article  Google Scholar 

  16. Holy, T.E., Leibler, S.: Dynamic instability of microtubules as an efficient way to search in space. Proc. Nat. Acad. Sci. 91, 5682–5685 (1994)

    Article  Google Scholar 

  17. Gerhart, J., Kirschner, M.: Cells, Embryos, and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability. Blackwell Science, Malden (1997)

    Google Scholar 

  18. Kirschner, M., Gerhart, J.: Evolvability. Proc. Nat. Acad. Sci. 95, 8420–8427 (1998)

    Article  Google Scholar 

  19. Cauwenberghs, G.: A fast stochastic error-descent algorithm for supervised learning and optimization. In: Advances in Neural Information Processing Systems, pp. 244–251 (1993)

    Google Scholar 

  20. Sebastian Seung, H.: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40, 1063–1073 (2003)

    Article  Google Scholar 

  21. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Syst. 1, 495–502 (1987)

    MATH  Google Scholar 

  22. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 543–584. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107, 5393–5398 (2010)

    Article  Google Scholar 

  24. Chen, Y.-J.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755 (2013)

    Article  Google Scholar 

  25. Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic acid dynamical systems. Science 358, eaal2052 (2017)

    Article  Google Scholar 

  26. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  27. Anderson, D.F., Cappelletti, D., Koyama, M., Kurtz, T.G.: Non-explosivity of stochastically modeled reaction networks that are complex balanced. Bull. Math. Biol. 80, 2561–2579 (2018)

    Article  MathSciNet  Google Scholar 

  28. Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972)

    Article  Google Scholar 

  29. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3, 147–195 (1969)

    Article  MathSciNet  Google Scholar 

  30. Johnson, R.F., Dong, Q., Winfree, E.: Verifying chemical reaction network implementations: a bisimulation approach. Theor. Comput. Sci. 765, 3–46 (2019)

    Article  MathSciNet  Google Scholar 

  31. Doty, D., Zhu, S.: Computational complexity of atomic chemical reaction networks. Natural Comput. 17, 677–691 (2018)

    Article  MathSciNet  Google Scholar 

  32. Magnasco, M.O.: Chemical kinetics is turing universal. Phys. Rev. Lett. 78, 1190–1193 (1997)

    Article  Google Scholar 

  33. Liekens, A.M.L., Fernando, C.T.: Turing complete catalytic particle computers. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1202–1211. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74913-4_120

    Chapter  Google Scholar 

  34. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7, 615–633 (2008)

    Article  MathSciNet  Google Scholar 

  35. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Natural Comput. 13, 517–534 (2014)

    Article  MathSciNet  Google Scholar 

  36. Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with chemical reaction networks. Natural Comput. 15, 245–261 (2016)

    Article  MathSciNet  Google Scholar 

  37. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction networks. In: Advances in Neural Information Processing Systems, pp. 2247–2255 (2013)

    Google Scholar 

  38. Gopalkrishnan, M.: A scheme for molecular computation of maximum likelihood estimators for log-linear models. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43994-5_1

    Chapter  MATH  Google Scholar 

  39. Fett, B., Bruck, J., Riedel, M.D.: Synthesizing stochasticity in biochemical systems. In: Proceedings of the 44th Annual Design Automation Conference, pp. 640–645. ACM (2007)

    Google Scholar 

  40. Poole, W., et al.: Chemical boltzmann machines. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 210–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66799-7_14

    Chapter  Google Scholar 

  41. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Programming discrete distributions with chemical reaction networks. Nat. Comput. 17, 131–145 (2018)

    Article  MathSciNet  Google Scholar 

  42. Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947–1970 (2010)

    Article  MathSciNet  Google Scholar 

  43. Cappelletti, D., Ortiz-Munoz, A., Anderson, D., Winfree, E.: Stochastic chemical reaction networks for robustly approximating arbitrary probability distributions. arXiv preprint arXiv:1810.02854 (2018)

  44. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499–502 (2002)

    Article  Google Scholar 

  45. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean expressions. Science 264, 1297–1301 (1994)

    Article  MathSciNet  Google Scholar 

  46. Selman, B., Kirkpatrick, S.: Critical behavior in the computational cost of satisfiability testing. Artif. Intell. 81, 273–295 (1996)

    Article  MathSciNet  Google Scholar 

  47. Strzebonski, A.: Mathematica SatisfiabilityQ uses MiniSAT 1.14. StackExchange and personal communication (2016, 2019). https://mathematica.stackexchange.com/questions/103726/why-is-satisfiabilitycount-faster-than-satisfiableq

  48. Soloveichik, D.: CRNSimulatorSSA Mathematica Package. Personal Web Site (2016). http://users.ece.utexas.edu/~soloveichik/crnsimulator.html

  49. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)

    Article  Google Scholar 

  50. Mauch, S., Stalzer, M.: Efficient formulations for exact stochastic simulation of chemical systems. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 27–35 (2011)

    Article  Google Scholar 

  51. Thanh, V.H., Zunino, R.: Adaptive tree-based search for stochastic simulation algorithm. Int. J. Comput. Biol. Drug Des. 7, 341–357 (2014)

    Article  Google Scholar 

  52. Condon, A., Hu, A.J., Maňuch, J., Thachuk, C.: Less haste, less waste: on recycling and its limits in strand displacement systems. Interface Focus 2, 512–521 (2012)

    Article  Google Scholar 

  53. Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 135–149. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32208-2_11

    Chapter  MATH  Google Scholar 

  54. Condon, A., Thachuk, C.: Towards space-and energy-efficient computations. In: Kempes, C., Grochow, J., Stadler, P., Wolpert, D. (eds.) The Energetics of Computing in Life and Machines, chapter 9, pp. 209–232. The Sante Fe Institute Press, Sante Fe (2019)

    Google Scholar 

  55. Matthew M Cook. Networks of Relations. PhD thesis, California Institute of Technology, 2005

    Google Scholar 

  56. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  57. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007)

    Article  Google Scholar 

  58. Reich, E.S.: Mathematician claims breakthrough in Sudoku puzzle. Nature (2012). https://doi.org/10.1038/nature.2012.9751

    Article  Google Scholar 

  59. Karr, J.R., Sanghvi, J.C., Macklin, D.N., Arora, A., Covert, M.W.: WholeCellKB model organism databases for comprehensive whole-cell models. Nucleic Acids Res. 41, D787–D792 (2012)

    Article  Google Scholar 

  60. Winfree, E.: Mathematica Notebooks for CRN SAT Solvers. Personal Web Site (2019). http://www.dna.caltech.edu/SupplementaryMaterial/CRNSAT/

Download references

Acknowledgements

This work was supported in part by National Science Foundation (NSF) grant 1317694 – The Molecular Programming Project. Thanks to Matt Cook, David Soloveichik, Chris Thachuk, William Poole, Lulu Qian, Grzegorz Rozenberg, Moshe Vardi, Tony Rojko, and Henry Lester for stimulating questions, comments, and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Winfree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Winfree, E. (2019). Chemical Reaction Networks and Stochastic Local Search. In: Thachuk, C., Liu, Y. (eds) DNA Computing and Molecular Programming. DNA 2019. Lecture Notes in Computer Science(), vol 11648. Springer, Cham. https://doi.org/10.1007/978-3-030-26807-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26807-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26806-0

  • Online ISBN: 978-3-030-26807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics