Abstract
Person re-identification is yet a critical challenging task in video surveillance domain. It aims to match the same person across different cameras. Practically, pedestrian’s appearances may vary greatly due to the complex background. Most deep learning methods rely on convolutional neural network to extract the feature of the pedestrian. But most of them lose the crucial details of the pedestrian and are sensitive to the viewpoints of the camera. To remedy this problem, we propose using capsule network as the feature extractor and introduce an improved loss function for the network. The experiment results on the Market-1501 dataset show the effectiveness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, Y., Takala, V., Pietikainen, M.: Matching groups of people by covariance descriptor. In: 2010 20th International Conference on Pattern Recognition, pp. 2744–2747. IEEE (2010)
Huang, D.-S., Chi, Z., Siu, W.-C.: Computation: a case study for constrained learning neural root finders. Appl. Math. Comput. 165, 699–718 (2005)
Zheng, W.-S., Li, X., Xiang, T., Liao, S., Lai, J., Gong, S.: Partial person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4678–4686 (2015)
Huang, D.-S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19, 2099–2115 (2008)
Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3586–3593 (2013)
Huang, D.-S., Horace, H.I., Ken, C.L., Chi, Z., Wong, H.-S.: Computation: a new partitioning neural network model for recursively finding arbitrary roots of higher order arbitrary polynomials. Appl. Math. Comput. 162, 1183–1200 (2005)
Zhao, R., Ouyang, W., Wang, X.: Learning mid-level filters for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 144–151 (2014)
Huang, D.-S., Ip, H.H., Chi, Z.J.: A neural root finder of polynomials based on root moments. Neural Comput. 16, 1721–1762 (2004)
Su, C., Yang, F., Zhang, S., Tian, Q., Davis, L.S., Gao, W.: Multi-task learning with low rank attribute embedding for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3739–3747 (2015)
Huang, D.-S., Ip, H.H.-S., Law, K.C.K., Chi, Z.J.: Zeroing polynomials using modified constrained neural network approach. IEEE Trans. Neural Netw. 16, 721–732 (2005)
Barbosa, I.B., Cristani, M., Del Bue, A., Bazzani, L., Murino, V.: Re-identification with RGB-D sensors. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 433–442. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_43
Huang, D.-S.: Beijing: Systematic theory of neural networks for pattern recognition. J. Publishing House Electron. Ind. China 201 (1996)
Takač, B., Catala, A., Rauterberg, M., Chen, W.: People identification for domestic non-overlapping RGB-D camera networks. In: 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), pp. 1–6. IEEE (2014)
Huang, D.-S.: A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Trans. Neural Netw. 15, 477–491 (2004)
Oliver, J., Albiol, A., Albiol, A.: 3D descriptor for people re-identification. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR 2012), pp. 1395–1398. IEEE (2012)
Huang, D.-S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recogn. Artif. Intell. 13, 1083–1101 (1999)
Hoi, S.C., Liu, W., Lyu, M.R., Ma, W.-Y.: Learning distance metrics with contextual constraints for image retrieval. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 2072–2078. IEEE (2006)
Li, B., Zheng, C.-H., Huang, D.-S.: Locally linear discriminant embedding: an efficient method for face recognition. J. Pattern Recogn. 41, 3813–3821 (2008)
Shang, L., Huang, D.-S., Du, J.-X., Zheng, C.-H.: Palmprint recognition using FastICA algorithm and radial basis probabilistic neural network. Neurocomputing 69, 1782–1786 (2006)
Guillaumin, M., Verbeek, J., Schmid, C.: Multiple instance metric learning from automatically labeled bags of faces. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 634–647. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_46
Wang, X.-F., Huang, D.-S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recogn. 43, 603–618 (2010)
Yu, J., Tian, Q., Amores, J., Sebe, N.: Toward robust distance metric analysis for similarity estimation. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 316–322. IEEE (2006)
Wang, X.-F., Huang, D.-S.: A novel density-based clustering framework by using level set method. IEEE Trans. Knowl. Data Eng. 21, 1515–1531 (2009)
Roth, Peter M., Hirzer, M., Köstinger, M., Beleznai, C., Bischof, H.: Mahalanobis distance learning for person re-identification. In: Gong, S., Cristani, M., Yan, S., Loy, C.C. (eds.) Person Re-Identification. ACVPR, pp. 247–267. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6296-4_12
Zhao, Z.-Q., Huang, D.-S., Sun, B.-Y.: Human face recognition based on multi-features using neural networks committee. Pattern Recogn. Lett. 25, 1351–1358 (2004)
Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)
Robinson, P.: The CNN Effect: The Myth of News. Foreign Policy and Intervention. Routledge, Abingdon (2005)
Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3856–3866 (2017)
Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing (2018)
Wang, D., Liu, Q.: An optimization view on dynamic routing between capsules (2018)
Zhao, W., Ye, J., Yang, M., Lei, Z., Zhang, S., Zhao, Z.: Investigating capsule networks with dynamic routing for text classification (2018)
Xi, E., Bing, S., Jin, Y.: Capsule network performance on complex data (2017)
Neill, J.O.: Siamese capsule networks (2018)
Iesmantas, T., Alzbutas, R.: Convolutional capsule network for classification of breast cancer histology images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 853–860. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_97
Chen, Z., Crandall, D.: Generalized capsule networks with trainable routing procedure (2018)
Shen, Y., Gao, M.: Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 389–397. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_45
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
Acknowledgements
This work was supported by the grants of the National Science Foundation of China, Nos. 61672203, 61572447, 61772357, 31571364, 61861146002,61520106006, 61772370, 61702371, 61672382, and 61732012, China Post-doctoral Science Foundation Grant, No. 2017M611619, and supported by “BAGUI Scholar” Program and the Scientific & Technological Base and Talent Special Program, GuiKe AD18126015 of the Guangxi Zhuang Autonomous Region of China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, A., Wu, D., Huang, DS., Zhang, L. (2019). Convolutional Capsule-Based Network for Person Re-identification. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11643. Springer, Cham. https://doi.org/10.1007/978-3-030-26763-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-26763-6_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26762-9
Online ISBN: 978-3-030-26763-6
eBook Packages: Computer ScienceComputer Science (R0)