3D Articulated Model Retrieval Using Depth Image Input | SpringerLink
Skip to main content

3D Articulated Model Retrieval Using Depth Image Input

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018)

Abstract

In this paper, a novel framework to retrieve 3D articulated models from a database based on one or few depth images is presented. Existing state-of-the-arts retrieval approaches usually constrain the view points of query images or assume that the target models are rigid-body. When they are applied to retrieving articulated models, the retrieved results are substantially influenced by the model postures. In our work, we extracts the limbs and torso regions from projections and analyzes the features of local regions. The use of both global and local features can alleviate the disturbance of model postures in model retrieval. Experiments show that the proposed method can efficiently retrieve relevant models within a second, and provides higher retrieval accuracy than those of compared methods for not only rigid body 3D models but also models with articulated limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8693
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10867
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin, J.Y., She, M.F., Tsai, M.H., Lin, I.C., Lau, Y.C., Liu, H.H.: Retrieving 3D objects with articulated limbs by depth image input. In: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, INSTICC, pp. 101–111. SciTePress (2018)

    Google Scholar 

  2. Canterakis, N.: 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. In: 11th Scandinavian Conference on Image Analysis In 11th Sc, pp. 85–93 (1999)

    Google Scholar 

  3. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)

    Article  Google Scholar 

  4. ASUS Inc.: Xtion pro (2011). www.asus.com/3D-Sensor/

  5. Microsoft Corp.: Kinect (2011). www.xbox.com/Kinect

  6. Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis by Krawtchouk moments. Trans. Image Process. 12(11), 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  7. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  8. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Eurographics 22(3), 223–232 (2003)

    Google Scholar 

  9. Daras, P., Axenopoulos, A.: A 3D shape retrieval framework supporting multimodal queries. Int. J. Comput. Vis. 89(2–3), 229–247 (2010)

    Article  Google Scholar 

  10. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  11. Lin, I.C., Lan, Y.C., Cheng, P.W.: SI-Cut: Structural inconsistency analysis for image foreground extraction. IEEE Trans. Vis. Comput. Graph. 21(7), 860–872 (2015)

    Article  Google Scholar 

  12. Lian, Z., Zhang, J.: SHREC15 non-rigid 3D shape retrieval (2015). www.icst.pku.edu.cn/zlian/shrec15-non-rigid/data.html

  13. Autodesk Inc.: Maya (1998). www.autodesk.com/products/maya/

  14. Shen, W., Wang, Y., Bai, X., Wang, H., Jan Latecki, L.: Shape clustering: common structure discovery. Pattern Recogn. 46(2), 539–550 (2013)

    Article  Google Scholar 

  15. Chen, C.H., Tsai, M.H., Lin, I.C., Lu, P.H.: Skeleton-driven surface deformation through lattices for real-time character animation. Vis. Comput. 29(4), 241–251 (2013)

    Article  Google Scholar 

  16. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.G.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Confererence on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  17. Funkhouser, T., et al.: A search engine for 3D models. ACM Trans. Graph. 22(1), 83–105 (2003)

    Article  Google Scholar 

  18. Wu, L.C., Lin, I., Tsai, M.H.: Augmented reality instruction for object assembly based on markerless tracking. In: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D 2016, pp. 95–102. ACM (2016)

    Google Scholar 

  19. Shen, W., Bai, X., Hu, R., Wang, H., Latecki, L.J.: Skeleton growing and pruning with bending potential ratio. Pattern Recogn. 44(2), 196–209 (2011)

    Article  Google Scholar 

  20. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3D freeform design. In: Proceedings of SIGGRAPH, pp. 409–416 (1999)

    Google Scholar 

  21. Wang, Y.S., Lee, T.Y.: Curve-skeleton extraction using iterative least squares optimization. IEEE Trans. Visual Comput. Graphics 14(4), 926–936 (2008)

    Article  Google Scholar 

  22. Mohamed, W., Hamza, A.B.: Reeb graph path dissimilarity for 3D object matching and retrieval. Visual Comput. 28(3), 305–318 (2012)

    Article  Google Scholar 

  23. Kim, V.G., Li, W., Mitra, N.J., Chaudhuri, S., DiVerdi, S., Funkhouser, T.: Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph. 32(4), 70:1–70:12 (2013)

    MATH  Google Scholar 

  24. Kim, V.G., Chaudhuri, S., Guibas, L., Funkhouser, T.: Shape2pose: Human-centric shape analysis. ACM Trans. Graph. 33(4), 120:1–120:12 (2014)

    Google Scholar 

  25. Xie, Z., Xiong, Y., Xu, K.: AB3D: action-based 3D descriptor for shape analysis. Vis. Comput. 30(6–8), 591–601 (2014)

    Article  Google Scholar 

  26. Kleiman, Y., van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D.: SHED: shape edit distance for fine-grained shape similarity. ACM Trans. Graph. 34(6), 235:1–235:11 (2015)

    Article  Google Scholar 

  27. López-Sastre, R.J., García-Fuertes, A., Redondo-Cabrera, C., Acevedo-Rodríguez, F.J., Maldonado-Bascón, S.: Evaluating 3D spatial pyramids for classifying 3D shapes. Comput. Graph. 37(5), 473–483 (2013)

    Article  Google Scholar 

  28. Sipiran, I., Bustos, B., Schreck, T.: Data-aware 3D partitioning for generic shape retrieval. Comput. graph. 37(5), 460–472 (2013)

    Article  Google Scholar 

  29. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This paper was partially supported by Telecommunication Laboratories, Chunghwa Telecom Co., Ltd., and by the Ministry of Science and Technology, Taiwan, under grant no. 106-2221-E-009 -178 -MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Han Tsai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 14998 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, JY., She, MF., Tsai, MH., Lin, IC., Lau, YC., Liu, HH. (2019). 3D Articulated Model Retrieval Using Depth Image Input. In: Bechmann, D., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2018. Communications in Computer and Information Science, vol 997. Springer, Cham. https://doi.org/10.1007/978-3-030-26756-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26756-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26755-1

  • Online ISBN: 978-3-030-26756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics