Abstract
Data lakes offer enterprises an easy-to-use approach for centralizing the collection of their data sets. However, by just filling the data lake with raw data sets, the probability of creating a data swamp increases. To overcome this drawback, the annotation of data sets with additional meta information is crucial. One way to provide data with such information is to use semantic models that enable the automatic interpretation and processing of data values and their context. However, creating semantic models for data sets containing hundreds of data attributes requires a lot of effort. To support this modeling process, external knowledge bases provide the background knowledge required to create sophisticated semantic models.
In order to benefit from this existing knowledge, we propose a novel modular recommendation framework for identifying the best fitting semantic concepts for a set of data attribute labels. The framework, whose design is based on intensive review of real-world data attribute labels, queries arbitrary pluggable knowledge bases and weights/aggregates their results. We evaluate our approach with different existing knowledge bases and compare it with existing state-of-the-art approaches. In addition, we integrate it into the semantic data platform ESKAPE and discuss how it simplifies the process of creating semantic models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
References
Paulus, A., Pomp, A., Poth, L., Lipp, J., Meisen, T.: Gathering and combining semantic concepts from multiple knowledge bases. In: Proceedings of the 20th International Conference on Enterprise Information Systems, ICEIS, INSTICC, vol. 1, pp. 69–80. SciTePress (2018)
Pomp, A., Paulus, A., Jeschke, S., Meisen, T.: Enabling semantics in enterprises. In: Hammoudi, S., Śmiałek, M., Camp, O., Filipe, J. (eds.) Enterprise Information Systems, vol. 321, pp. 428–450. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-93375-7_20
Khan, M.H., Jan, S., Khan, I., Shah, I.A.: Evaluation of linguistic similarity measurement techniques for ontology alignment. In: 2015 International Conference on Emerging Technologies (ICET), pp. 1–6 (2015)
Mascardi, V., Locoro, A., Rosso, P.: Automatic ontology matching via upper ontologies: a systematic evaluation. IEEE Trans. Knowl. Data Eng. 22, 609–623 (2010)
Smirnov, A., Kashevnik, A., Shilov, N., Balandin, S., Oliver, I., Boldyrev, S.: Principles of ontology matching, translation and interpretation in smart spaces. In: 2011 IEEE Consumer Communications and Networking Conference (CCNC), pp. 158–162 (2011)
Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA—a mapping framework for distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45810-7_23
Goel, A., Knoblock, C.A., Lerman, K.: Exploiting structure within data for accurate labeling using conditional random fields. In: Proceedings of the 14th International Conference on Artificial Intelligence (ICAI) (2012)
Ramnandan, S.K., Mittal, A., Knoblock, C.A., Szekely, P.: Assigning semantic labels to data sources. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 403–417. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18818-8_25
Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Learning the semantics of structured data sources. Web Semant.: Sci. Serv. Agents World Wide Web 37, 152–169 (2016)
Taheriyan, M., Knoblock, C., Szekely, P., Ambite, J.L., Chen, Y.: Leveraging linked data to infer semantic relations within structured sources. In: Proceedings of the 6th International Workshop on Consuming Linked Data (COLD 2015) (2015)
Syed, Z., Finin, T., Mulwad, V., Joshi, A.: Exploiting a web of semantic data for interpreting tables. In: Proceedings of the Second Web Science Conference, vol. 5 (2010)
Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding tables on the web. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 141–155. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34002-4_11
Du, W.H., Rau, J.W., Huang, J.W., Chen, Y.S.: Improving the quality of tags using state transition on progressive image search and recommendation system. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3233–3238 (2012)
Kim, H.L., Passant, A., Breslin, J.G., Scerri, S., Decker, S.: Review and alignment of tag ontologies for semantically-linked data in collaborative tagging spaces. In: 2008 IEEE International Conference on Semantic Computing, pp. 315–322 (2008)
Singhal, A., Srivastava, J.: Leveraging the web for automating tag expansion for low-content items. In: 2014 IEEE 15th International Conference on Information Reuse and Integration (IRI), pp. 545–552 (2014)
Kalender, M., Dang, J., Uskudarli, S.: UNIpedia: a unified ontological knowledge platform for semantic content tagging and search. In: 2010 IEEE Fourth International Conference on Semantic Computing (ICSC), pp. 293–298 (2010)
Hong, H.K., Park, K.W., Lee, D.H.: A novel semantic tagging technique exploiting wikipedia-based associated words. In: 2015 IEEE 39th Annual Computer Software and Applications Conference (COMPSAC), vol. 3, pp. 648–649 (2015)
Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)
Wolfram Alpha: Computational Knowledge Engine (2017). https://www.wolframalpha.com/
Jonquet, C., Musen, M.A., Shah, N.H.: Building a biomedical ontology recommender web service. J. Biomed. Semant. 1, S1 (2010)
Banerjee, S., Pedersen, T.: Extended gloss overlaps as a measure of semantic relatedness. In: Ijcai, vol. 3, pp. 805–810 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Paulus, A., Pomp, A., Poth, L., Lipp, J., Meisen, T. (2019). Recommending Semantic Concepts for Improving the Process of Semantic Modeling. In: Hammoudi, S., Śmiałek, M., Camp, O., Filipe, J. (eds) Enterprise Information Systems. ICEIS 2018. Lecture Notes in Business Information Processing, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-26169-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-26169-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26168-9
Online ISBN: 978-3-030-26169-6
eBook Packages: Computer ScienceComputer Science (R0)