Abstract
A countable graph G is n-ordered if its vertices can be enumerated so each vertex has no more than n neighbours appearing earlier in the enumeration. Here we consider both deterministic and probabilistic methods to produce n-ordered countable graphs with universal adjacency properties. In the countably infinite case, we show that such universal adjacency properties imply the existence an independent 2-distinguishing labelling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbasi, A., Hossain, L., Leydesdorff, L.: Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. J. Inf. 6(3), 403–412 (2012)
Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)
Albertson, M.O., Collins, K.L.: Symmetry breaking in graphs. Electron. J. Comb. 3(1), 18 (1996)
Balachandran, N., Padinhatteeri, S.: Distinguishing chromatic number of random Cayley graphs. Discrete Math. 340(10), 2447–2455 (2017)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Barabási, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288(5), 60–69 (2003)
Benzi, M., Klymko, C.: On the limiting behavior of parameter-dependent network centrality measures. SIAM J. Matrix Anal. Appl. 36(2), 686–706 (2015)
Bonato, A.: The search for n-e.c. graphs. Contrib. Discret. Math. 4(1), 40–53 (2009)
Bonato, A., Janssen, J., Wang, C.: The n-ordered graphs: a new graph class. J. Graph Theory 60(3), 204–218 (2009)
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008). https://doi.org/10.1007/978-1-84628-970-5
Cameron, P.J.: The random graph revisited. Eur. Congr. Math. 1, 267–274 (2000)
Cheng, C.T.: On computing the distinguishing and distinguishing chromatic numbers of interval graphs and other results. Discrete Math. 309(16), 5169–5182 (2009)
Choi, J.O., Hartke, S.G., Kaul, H.: Distinguishing chromatic number of Cartesian products of graphs. SIAM J. Discret. Math. 24(1), 82–100 (2010)
Collins, K.L., Trenk, A.N.: The distinguishing chromatic number. Electron. J. Comb. 13(1), 16 (2006)
Deijfen, M., Van Den Esker, H., Van Der Hofstad, R., Hooghiemstra, G.: A preferential attachment model with random initial degrees. Arkiv för Matematik 47(1), 41–72 (2009)
Erdős, P., Rényi, A.: Asymmetric graphs. Acta Math. Hung. 14(3–4), 295–315 (1963)
Eschen, E.M., Hoàng, C.T., Sritharan, R., Stewart, L.: On the complexity of deciding whether the distinguishing chromatic number of a graph is at most two. Discrete Math. 311(6), 431–434 (2011)
Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Math. 3(2), 187–205 (2006)
Imrich, W., Klavžar, S., Trofimov, V.: Distinguishing infinite graphs. Electron. J. Comb. 14(1), R36 (2007)
Laflamme, C., Sauer, N., et al.: Distinguishing number of countable homogeneous relational structures. Electron. J. Comb. 17(1), R20 (2010)
De Solla Price, D.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27(5), 292–306 (1976)
Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2), 026112 (2003)
Russell, A., Sundaram, R.: A note on the asymptotics and computational complexity of graph distinguishability. Electron. J. Comb. 5(1), 23 (1998)
Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H., Laurienti, P.J.: The ubiquity of small-world networks. Brain Connect. 1(5), 367–375 (2011)
Wang, Z., Scaglione, A., Thomas, R.J.: Generating statistically correct random topologies for testing smart grid communication and control networks. IEEE Trans. Smart Grid 1(1), 28–39 (2010)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Duffy, C., Janssen, J. (2019). Strongly n-e.c. Graphs and Independent Distinguishing Labellings. In: Avrachenkov, K., Prałat, P., Ye, N. (eds) Algorithms and Models for the Web Graph. WAW 2019. Lecture Notes in Computer Science(), vol 11631. Springer, Cham. https://doi.org/10.1007/978-3-030-25070-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-25070-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25069-0
Online ISBN: 978-3-030-25070-6
eBook Packages: Computer ScienceComputer Science (R0)