Strongly n-e.c. Graphs and Independent Distinguishing Labellings | SpringerLink
Skip to main content

Strongly n-e.c. Graphs and Independent Distinguishing Labellings

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11631))

Included in the following conference series:

  • 288 Accesses

Abstract

A countable graph G is n-ordered if its vertices can be enumerated so each vertex has no more than n neighbours appearing earlier in the enumeration. Here we consider both deterministic and probabilistic methods to produce n-ordered countable graphs with universal adjacency properties. In the countably infinite case, we show that such universal adjacency properties imply the existence an independent 2-distinguishing labelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, A., Hossain, L., Leydesdorff, L.: Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. J. Inf. 6(3), 403–412 (2012)

    Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albertson, M.O., Collins, K.L.: Symmetry breaking in graphs. Electron. J. Comb. 3(1), 18 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Balachandran, N., Padinhatteeri, S.: Distinguishing chromatic number of random Cayley graphs. Discrete Math. 340(10), 2447–2455 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barabási, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288(5), 60–69 (2003)

    Article  Google Scholar 

  7. Benzi, M., Klymko, C.: On the limiting behavior of parameter-dependent network centrality measures. SIAM J. Matrix Anal. Appl. 36(2), 686–706 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonato, A.: The search for n-e.c. graphs. Contrib. Discret. Math. 4(1), 40–53 (2009)

    MATH  Google Scholar 

  9. Bonato, A., Janssen, J., Wang, C.: The n-ordered graphs: a new graph class. J. Graph Theory 60(3), 204–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008). https://doi.org/10.1007/978-1-84628-970-5

    Book  MATH  Google Scholar 

  11. Cameron, P.J.: The random graph revisited. Eur. Congr. Math. 1, 267–274 (2000)

    MATH  Google Scholar 

  12. Cheng, C.T.: On computing the distinguishing and distinguishing chromatic numbers of interval graphs and other results. Discrete Math. 309(16), 5169–5182 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi, J.O., Hartke, S.G., Kaul, H.: Distinguishing chromatic number of Cartesian products of graphs. SIAM J. Discret. Math. 24(1), 82–100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Collins, K.L., Trenk, A.N.: The distinguishing chromatic number. Electron. J. Comb. 13(1), 16 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Deijfen, M., Van Den Esker, H., Van Der Hofstad, R., Hooghiemstra, G.: A preferential attachment model with random initial degrees. Arkiv för Matematik 47(1), 41–72 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdős, P., Rényi, A.: Asymmetric graphs. Acta Math. Hung. 14(3–4), 295–315 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eschen, E.M., Hoàng, C.T., Sritharan, R., Stewart, L.: On the complexity of deciding whether the distinguishing chromatic number of a graph is at most two. Discrete Math. 311(6), 431–434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Math. 3(2), 187–205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Imrich, W., Klavžar, S., Trofimov, V.: Distinguishing infinite graphs. Electron. J. Comb. 14(1), R36 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Laflamme, C., Sauer, N., et al.: Distinguishing number of countable homogeneous relational structures. Electron. J. Comb. 17(1), R20 (2010)

    MathSciNet  MATH  Google Scholar 

  21. De Solla Price, D.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27(5), 292–306 (1976)

    Article  Google Scholar 

  22. Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2), 026112 (2003)

    Article  MATH  Google Scholar 

  23. Russell, A., Sundaram, R.: A note on the asymptotics and computational complexity of graph distinguishability. Electron. J. Comb. 5(1), 23 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H., Laurienti, P.J.: The ubiquity of small-world networks. Brain Connect. 1(5), 367–375 (2011)

    Article  Google Scholar 

  25. Wang, Z., Scaglione, A., Thomas, R.J.: Generating statistically correct random topologies for testing smart grid communication and control networks. IEEE Trans. Smart Grid 1(1), 28–39 (2010)

    Article  Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Duffy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duffy, C., Janssen, J. (2019). Strongly n-e.c. Graphs and Independent Distinguishing Labellings. In: Avrachenkov, K., Prałat, P., Ye, N. (eds) Algorithms and Models for the Web Graph. WAW 2019. Lecture Notes in Computer Science(), vol 11631. Springer, Cham. https://doi.org/10.1007/978-3-030-25070-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25070-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25069-0

  • Online ISBN: 978-3-030-25070-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics