The Relative Edit-Distance Between Two Input-Driven Languages | SpringerLink
Skip to main content

The Relative Edit-Distance Between Two Input-Driven Languages

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11647))

Included in the following conference series:

Abstract

We study the relative edit-distance problem between two input-driven languages. The relative edit-distance is closely related to the language inclusion problem, which is a crucial problem in formal verification. Input-driven languages are a robust subclass of context-free languages that enable to model program analysis questions within tractable time complexity. For instance, the language inclusion (or equivalence) problem is undecidable for context-free languages whereas the problem is solvable in polynomial time for input-driven languages specified by deterministic input-driven pushdown automata (IDPDAs) and is EXPTIME-complete for nondeterministic IDPDAs. Our main contribution is to prove that the relative edit-distance problem for two input-driven languages is decidable by designing a polynomial time IDPDA construction, based on the edit-distance, that recognizes a neighbourhood of a given input-driven language. In fact, the relative edit-distance problem between two input-driven languages turns out to be EXPTIME-complete when the neighbourhood distance threshold is fixed as a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 202–211 (2004)

    Google Scholar 

  2. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. J. Comput. Syst. Sci. 79(8), 1302–1321 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bourhis, P., Puppis, G., Riveros, C., Staworko, S.: Bounded repairability for regular tree languages. ACM Trans. Database Syst. 41(3), 18:1–18:45 (2016)

    Article  MathSciNet  Google Scholar 

  4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)

    Article  MathSciNet  Google Scholar 

  5. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of relations. Theor. Comput. Sci. 286(1), 117–138 (2002)

    Article  MathSciNet  Google Scholar 

  6. Deza, M.M., Deza, E.: Encyclopedia of Distances, pp. 1–583. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2_1

    Book  MATH  Google Scholar 

  7. Geffert, V., Bednárová, Z., Szabari, A.: Input-driven pushdown automata for edit distance neighborhood. In: Hofman, P., Skrzypczak, M. (eds.) DLT 2019. LNCS, vol. 11647, pp. 113–126. Springer, Cham (2019)

    Google Scholar 

  8. Han, Y.-S., Ko, S.-K.: Edit-distance between visibly pushdown languages. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 387–401. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_30

    Chapter  Google Scholar 

  9. Han, Y.S., Ko, S.K., Salomaa, K.: The edit-distance between a regular language and a context-free language. Int. J. Found. Comput. Sci. 24(7), 1067–1082 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  11. Ko, S.K., Han, Y.S., Salomaa, K.: Approximate matching between a context-free grammar and a finite-state automaton. Inf. Comput. 247, 278–289 (2016)

    Article  MathSciNet  Google Scholar 

  12. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  13. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_89

    Chapter  Google Scholar 

  14. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)

    Article  MathSciNet  Google Scholar 

  15. Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods and approximate pattern matching. In: Proceedings of the 19th International Conference on Developments in Language Theory, pp. 389–400 (2015)

    Chapter  Google Scholar 

  16. Okhotin, A., Salomaa, K.: Edit distance neighbourhoods of input- driven pushdown automata. Theor. Comput. Sci. (2019). https://doi.org/10.1016/j.tcs.2019.03.005

    Article  MathSciNet  Google Scholar 

  17. Otop, J., Ibsen-Jensen, R., Henzinger, T.A., Chatterjee, K.: Edit distance for pushdown automata. Log. Methods Comput. Sci. 13 (2017)

    Google Scholar 

  18. Pevzner, P.A.: Computational Molecular Biology - An Algorithmic Approach. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  19. Povarov, G.: Descriptive complexity of the Hamming neighborhood of a regular language. In: Proceedings of the 1st International Conference on Language and Automata Theory and Applications, pp. 509–520 (2007)

    Google Scholar 

  20. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 419–422 (1968)

    Article  Google Scholar 

  21. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21, 168–173 (1974)

    Article  MathSciNet  Google Scholar 

  22. Wood, D.: Theory of Computation. Harper & Row, New York (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Ki Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheon, H., Han, YS., Ko, SK., Salomaa, K. (2019). The Relative Edit-Distance Between Two Input-Driven Languages. In: Hofman, P., Skrzypczak, M. (eds) Developments in Language Theory. DLT 2019. Lecture Notes in Computer Science(), vol 11647. Springer, Cham. https://doi.org/10.1007/978-3-030-24886-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24886-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24885-7

  • Online ISBN: 978-3-030-24886-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics