Abstract
We suggest geomatic technology for monitoring natural processes, which is implemented on three web GIS platforms: (1) http://distcomp.ru/geo/arctic/—monitoring the hydroecological situation in the Arctic, (2) http://distcomp.ru/geo/2/, http://distcomp.ru/geo/3/—analysis of seismic fields and (3) http://distcomp.ru/geo/prognosis/—automatic prediction of earthquakes. Platforms combine two levels of geodata analysis. The first level supports automatic data processing and simple analysis tools that are suitable for any Internet user. The second level is designed for detailed data analysis performed by a specialist. Thus, users of the platform have the opportunity to receive preliminary information about the processes in the environment and conduct research.
The work was supported by Russian Foundation for Basic Research, project No. 17-07- 00494.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tsou, M.H.: Integrating Web-based GIS and image processing tools for environmental monitoring and natural resource management. J. Geogr. Syst. 6(2), 155–174 (2004)
Dangermond, J.: Geodesign and GIS–designing our futures. In: Peer Reviewed Proceedings of Digital Landscape Architecture, Anhalt University of Applied Science, Germany (2010)
Harder, C.: The ArcGIS Book: 10 Big Ideas about Applying Geography to Your World. Esri Press, Redlands (2015)
Kattsov, V.M., Porfir’ev, B.N.: Climatic changes in the Arctic: consequences for the environment and the economy. Arct. Ecol. Econ. 2(6), 66–78 (2012)
Overland, J.E., Wang, M., Walsh, J.E., Stroeve, J.C.: Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2(2), 68–74 (2014)
Anisimov, O.A.: Potential feedback of thawing permafrost to the global climate system through methane emission. Environ. Res. Lett. 2(4) (2007)
Zelenina, L.I., Fed’kushova, S.I.: Prediction and consequences of climate fluctuation of the Arctic region. Arktikai Sever 5, 1–5 (2012). (In Russian)
Gitis, V., Derendyaev, A., Weinstock, A.: Web-based GIS technologies for monitoring and analysis of spatio-temporal processes. Int. J. Web Inf. Syst. 12(1), 102–124 (2016)
Gitis, V.G., et al.: Technology of monitoring and analysis of the hydrometeorological situation in the Arctic. J. Commun. Technol. Electron. 63(6), 691–705 (2018)
Zatzepa, S.N., et al.: Modelling of oil spills in sea for planning on guaranteeing of ecological safety by realization of oil and gas plans. Part 1: methodology. ProblemyArktikiiAntarktiki 4(106), 27–39 (2015)
Huang, Q., Sobolev, G.A., Nagao, T.: Characteristics of the seismic quiescence and activation patterns before the M = 7.2 Kobe earthquake, January 17,1995. Tectonophysics 337(1–2), 99–116 (2001)
Kagan, Y.Y., Jackson, D.D.: New seismic gap hypothesis: five years after. J. Geophys. Res. Solid Earth 100(B3), 3943–3959 (1995)
Chen, C.C., et al.: The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and quiescence. Geophys. Res. Lett. 32(22) (2005). https://doi.org/10.1029/2005GL023991
Gitis, V.G., Derendyaev, A.B., Pirogov, S.A., Spokoiny, V.G., Yurkov, E.F.: Earthquake prediction using the fields estimated by an adaptive algorithm. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, Article No. 30 (2017)
Keilis-Borok, V., Soloviev, A.A. (eds.): Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2013)
Kossobokov, V., Shebalin, P.: Earthquake prediction. In: Keilis-Borok, V.I., Soloviev, A.A. (eds.) Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. SSSYN, pp. 141–207. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05298-3_4
Zavyalov, A.D.: Extended Forecast of Earthquakes: Fundamentals, Methodology, Realization. Nauka, Moscow (2006). (in Russian)
Kossobokov, V.G.: User manual for M8. In: Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (eds.) Algorithms for Earthquake Statistics and Prediction, vol. 6, pp. 167–222 (1997)
Bhatia, A., Pasari, S., Mehta, A.: Earthquake forecasting using artificial neural networks. In: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences (2018)
Rhoades, D.A.: Application of the EEPAS model to forecasting earthquakes of moderate magnitude in southern California. Seismol. Res. Lett. 78(1), 110–115 (2007)
Bishop, C.M.: Machine Learning and Pattern Recognition. Information Science and Statistics. Springer, Heidelberg (2006)
Gitis, V.G., Derendyaev, A.B.: Earthquake prediction learning using the least alarm method. J. Commun. Technol. Electron. 63(6), 680–690 (2018)
Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS (LNAI), vol. 6206, pp. 188–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17080-5_21
Molchan, G.M.: Earthquake prediction as a decision-making problem. Pure. appl. Geophys. 149(1), 233–247 (1997)
Kossobokov, V.G., Romashkova, L.L., Keilis-Borok, V.I., Healy, J.H.: Testing earthquake prediction algorithms: statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992–1997. Phys. Earth Planet. Inter. 111(3–4), 187–196 (1999)
Gutenberg, B., Richter, C.: Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34(4), 185–188 (1944)
International Seismological Centre: Internatl. Seismol. Cent., Thatcham, United Kingdom (2015). http://www.isc.ac.uk
Masse, R.P., Needham, R.E.: NEIC-The National Earthquake Information Center. Earthquakes Volcanoes (USGS) 21(1), 4–44 (1989)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Gitis, V.G., Derendyaev, A.B. (2019). Geomatics for Environmental Monitoring, Analysis and Forecast. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11622. Springer, Cham. https://doi.org/10.1007/978-3-030-24305-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-24305-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24304-3
Online ISBN: 978-3-030-24305-0
eBook Packages: Computer ScienceComputer Science (R0)