Methods for Analyzing Polarity of the Kazakh Texts Related to the Terrorist Threats | SpringerLink
Skip to main content

Methods for Analyzing Polarity of the Kazakh Texts Related to the Terrorist Threats

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

In this work we described the rule-based method, using dictionary for sentiment analysis of texts in the Kazakh language related to the terrorist threats. It provides an overview of the methods for analyzing polarity, parser, which analyzes the pages on the content of keywords from the database, morphological, syntactic and sentiment analysis of the texts in the Kazakh language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)

    Google Scholar 

  2. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval. Now Publishers (2008)

    Google Scholar 

  3. Loukachevitch, N.V., Chetviorkin, I.I.: Evaluating Sentiment Analysis Systems in Russian. Artif. Intell. Decis. Making 1, 25–33 (2014). (In Russian)

    Google Scholar 

  4. Chetvirokin, I., Loukachevitch, N.: Sentiment analysis track at ROMIP 2012. In: Proceedings of International Conference Dialog-2013, vol. 2, pp. 40–50 (2013)

    Google Scholar 

  5. Akba, F., Uçan, A., Sezer, E.A., Sever, H.: Assessment of feature selection metrics for sentiment analyses: Turkish movie reviews. In: Proceedings of the 8th European Conference on Data Mining, pp. 180–184 (2014)

    Google Scholar 

  6. Yıldırım, E., Çetin, F., Eryiğit, G., Temel, T.: The impact of NLP on Turkish sentiment analysis. In: Proceedings of the TURKLANG 2014 International Conference on Turkic Language Processing, Istanbul (2014)

    Google Scholar 

  7. Eryiğit, G., Çetin, F., Yanık, M., Temel, T., Çiçekli, I.: TURKSENT: a sentiment annotation tool for social media. In: Proceedings of the 7th Linguistic Annotation Workshop & Interoperability with Discourse, ACL 2013, Sofia, Bulgaria (2013)

    Google Scholar 

  8. Sixto, J., Almeida, A., López-de-Ipiña, D.: An approach to subjectivity detection on twitter using the structured information. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 121–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_11

    Chapter  Google Scholar 

  9. Mohammad, S., Salameh, M., Kiritchenko, S.: Sentiment lexicons for Arabic social media. In: Proceedings of the 10th Edition of the Language Resources and Evaluation Conference, Portorož (Slovenia) (2016)

    Google Scholar 

  10. Samir, T., Abdul-Nabi, I.: Semantic sentiment analysis in Arabic social media. J. King Saud Univ. Comput. Inf. Sci. 29(2), 229–233 (2016)

    Google Scholar 

  11. Franzoni, V., Milani, A., Biondi, G: SEMO: a semantic model for emotion recognition in web objects. In: Proceedings IEEE/WIC/ACM International Conference on Web Intelligence, WI (2017)

    Google Scholar 

  12. Sakenovich, N.S., Zharmagambetov, A.S.: On one approach of solving sentiment analysis task for Kazakh and Russian languages using deep learning. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9876, pp. 537–545. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45246-3_51

    Chapter  Google Scholar 

  13. Abdullin, Y.B., Ivanov, V.V.: Deep learning model for bilingual sentiment classification of short texts. Sci. Tech. J. Inf. Technol. Mech. Opt. 17(1), 129–136 (2017)

    Google Scholar 

  14. Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh text and their polarity. In: Web Intelligence (2019)

    Article  Google Scholar 

  15. Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis on the hotel reviews in the Kazakh language. In: 2nd International Conference on Computer Science and Engineering, UBMK (2017)

    Google Scholar 

  16. Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M.: Ontology-based sentiment analysis of Kazakh sentences. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 669–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_47

    Chapter  Google Scholar 

  17. Picard, R.W.: Affective Computing. MIT Media Laboratory Perceptual Computing Section Technical Report No. 321. Media Lab. Massachusetts Institute of Technology, Cambridge University (1995)

    Google Scholar 

  18. Biondi, G., Franzoni, V., Li, Y., Milani, A.: Web-based similarity for emotion recognition in web objects. In: Proceedings - 9th IEEE/ACM International Conference on Utility and Cloud Computing, UCC 2016, pp. 327–332 (2016)

    Google Scholar 

  19. Poria, S., Chaturvedi, I., Cambria, E., Hussain, A.: Convolutional MKL based multimodal emotion recognition and sentiment analysis. In: Proceedings - IEEE International Conference on Data Mining, ICDM, Art. no. 7837868, pp. 439–448 (2017)

    Google Scholar 

  20. Arunnehru, J., Kalaiselvi Geetha, M.: Automatic human emotion recognition in surveillance video. Stud. Comput. Intell. 660, 321–342 (2017)

    Google Scholar 

  21. Jiang, R., Ho, A.T.S., Cheheb, I., Al-Maadeed, N., Al-Maadeed, S., Bouridane, A.: Emotion recognition from scrambled facial images via many graph embedding. Pattern Recogn. 67, 245–251 (2017)

    Article  Google Scholar 

  22. Mahesh, S., Mahesh, T.R.: Vinayababu, M: Using data mining techniques for detecting terror-related activities on the WEB. J. Theor. Appl. Inf. Technol. 16(2), 99–104 (2010)

    Google Scholar 

  23. De Smedt, T., De Pauw, G., Van Ostaeyen, P.: Automatic Detection of Online Jihadist Hate Speech: CLiPS Technical Report Series (2018)

    Google Scholar 

  24. https://wordnet.princeton.edu/

  25. Esuli A., Baccianella S., Sebastiani F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the International Conference on Language Resources and Evaluation, Valletta, Malta (2010)

    Google Scholar 

  26. Analyst’s Desktop Binder, U.S. Department of Homeland Security [Элeктpoнный pecypc]. https://epic.org/foia/epic-v-dhs-media-monitoring/Analyst-Desktop-Binder-REDACTED.pdf

  27. Sharipbayev, A., Bekmanova, G., Buribayeva, A., Mukanova, A., Kaliyev, A.: Semantic neural network model of morphological rules of the agglutinative languages. In: The 6th International Conference on Soft Computing and Intelligent Systems. The 13th International Symposium on Advanced Intelligent Systems, Kobe, Japan, pp. 1094–1099 (2012)

    Google Scholar 

  28. Yergesh, B., Mukanova, A., Sharipbay, A., Bekmanova, G., Razakhova, B.: Semantic hyper-graph based representation of nouns in the Kazakh language. Computacion y Sistemas 18(3), 627–635 (2014)

    Google Scholar 

  29. Zhetkenbay, L., Sharipbay, A., Bekmanova, G., Kamanur, U.: Ontological modeling of morphological rules for the adjectives in Kazakh and Turkish languages. J. Theor. Appl. Inf. Technol. 91, 257–263 (2016)

    Google Scholar 

  30. Razakhova, B.Sh., Sharipbaev, A.A.: Formalization of syntactic rules of the Kazakh language Becтник. Special issue.- Astana: L.N. Gumilyov ENU, pp. 42–50 (2012)

    Google Scholar 

  31. Yergesh, B., Sharipbay, A., Bekmanova, G., Lipnitskii, S.: Sentiment analysis of Kazakh phrases based on morphological rules. Theor. Appl. Sci. Tech. J. 2(38), 39–42 (2016). Kyrgyz State Technical University named after I. Razzakov

    Google Scholar 

  32. Pazelskaya, A., Solovyev, A.: A method of sentiment analysis in Russian texts. In: Dialog (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulmira Bekmanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bekmanova, G., Yelibayeva, G., Aubakirova, S., Dyussupova, N., Sharipbay, A., Nyazova, R. (2019). Methods for Analyzing Polarity of the Kazakh Texts Related to the Terrorist Threats. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics