Abstract
In this work we described the rule-based method, using dictionary for sentiment analysis of texts in the Kazakh language related to the terrorist threats. It provides an overview of the methods for analyzing polarity, parser, which analyzes the pages on the content of keywords from the database, morphological, syntactic and sentiment analysis of the texts in the Kazakh language.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval. Now Publishers (2008)
Loukachevitch, N.V., Chetviorkin, I.I.: Evaluating Sentiment Analysis Systems in Russian. Artif. Intell. Decis. Making 1, 25–33 (2014). (In Russian)
Chetvirokin, I., Loukachevitch, N.: Sentiment analysis track at ROMIP 2012. In: Proceedings of International Conference Dialog-2013, vol. 2, pp. 40–50 (2013)
Akba, F., Uçan, A., Sezer, E.A., Sever, H.: Assessment of feature selection metrics for sentiment analyses: Turkish movie reviews. In: Proceedings of the 8th European Conference on Data Mining, pp. 180–184 (2014)
Yıldırım, E., Çetin, F., Eryiğit, G., Temel, T.: The impact of NLP on Turkish sentiment analysis. In: Proceedings of the TURKLANG 2014 International Conference on Turkic Language Processing, Istanbul (2014)
Eryiğit, G., Çetin, F., Yanık, M., Temel, T., Çiçekli, I.: TURKSENT: a sentiment annotation tool for social media. In: Proceedings of the 7th Linguistic Annotation Workshop & Interoperability with Discourse, ACL 2013, Sofia, Bulgaria (2013)
Sixto, J., Almeida, A., López-de-Ipiña, D.: An approach to subjectivity detection on twitter using the structured information. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 121–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45243-2_11
Mohammad, S., Salameh, M., Kiritchenko, S.: Sentiment lexicons for Arabic social media. In: Proceedings of the 10th Edition of the Language Resources and Evaluation Conference, Portorož (Slovenia) (2016)
Samir, T., Abdul-Nabi, I.: Semantic sentiment analysis in Arabic social media. J. King Saud Univ. Comput. Inf. Sci. 29(2), 229–233 (2016)
Franzoni, V., Milani, A., Biondi, G: SEMO: a semantic model for emotion recognition in web objects. In: Proceedings IEEE/WIC/ACM International Conference on Web Intelligence, WI (2017)
Sakenovich, N.S., Zharmagambetov, A.S.: On one approach of solving sentiment analysis task for Kazakh and Russian languages using deep learning. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9876, pp. 537–545. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45246-3_51
Abdullin, Y.B., Ivanov, V.V.: Deep learning model for bilingual sentiment classification of short texts. Sci. Tech. J. Inf. Technol. Mech. Opt. 17(1), 129–136 (2017)
Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh text and their polarity. In: Web Intelligence (2019)
Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis on the hotel reviews in the Kazakh language. In: 2nd International Conference on Computer Science and Engineering, UBMK (2017)
Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M.: Ontology-based sentiment analysis of Kazakh sentences. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 669–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_47
Picard, R.W.: Affective Computing. MIT Media Laboratory Perceptual Computing Section Technical Report No. 321. Media Lab. Massachusetts Institute of Technology, Cambridge University (1995)
Biondi, G., Franzoni, V., Li, Y., Milani, A.: Web-based similarity for emotion recognition in web objects. In: Proceedings - 9th IEEE/ACM International Conference on Utility and Cloud Computing, UCC 2016, pp. 327–332 (2016)
Poria, S., Chaturvedi, I., Cambria, E., Hussain, A.: Convolutional MKL based multimodal emotion recognition and sentiment analysis. In: Proceedings - IEEE International Conference on Data Mining, ICDM, Art. no. 7837868, pp. 439–448 (2017)
Arunnehru, J., Kalaiselvi Geetha, M.: Automatic human emotion recognition in surveillance video. Stud. Comput. Intell. 660, 321–342 (2017)
Jiang, R., Ho, A.T.S., Cheheb, I., Al-Maadeed, N., Al-Maadeed, S., Bouridane, A.: Emotion recognition from scrambled facial images via many graph embedding. Pattern Recogn. 67, 245–251 (2017)
Mahesh, S., Mahesh, T.R.: Vinayababu, M: Using data mining techniques for detecting terror-related activities on the WEB. J. Theor. Appl. Inf. Technol. 16(2), 99–104 (2010)
De Smedt, T., De Pauw, G., Van Ostaeyen, P.: Automatic Detection of Online Jihadist Hate Speech: CLiPS Technical Report Series (2018)
Esuli A., Baccianella S., Sebastiani F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the International Conference on Language Resources and Evaluation, Valletta, Malta (2010)
Analyst’s Desktop Binder, U.S. Department of Homeland Security [Элeктpoнный pecypc]. https://epic.org/foia/epic-v-dhs-media-monitoring/Analyst-Desktop-Binder-REDACTED.pdf
Sharipbayev, A., Bekmanova, G., Buribayeva, A., Mukanova, A., Kaliyev, A.: Semantic neural network model of morphological rules of the agglutinative languages. In: The 6th International Conference on Soft Computing and Intelligent Systems. The 13th International Symposium on Advanced Intelligent Systems, Kobe, Japan, pp. 1094–1099 (2012)
Yergesh, B., Mukanova, A., Sharipbay, A., Bekmanova, G., Razakhova, B.: Semantic hyper-graph based representation of nouns in the Kazakh language. Computacion y Sistemas 18(3), 627–635 (2014)
Zhetkenbay, L., Sharipbay, A., Bekmanova, G., Kamanur, U.: Ontological modeling of morphological rules for the adjectives in Kazakh and Turkish languages. J. Theor. Appl. Inf. Technol. 91, 257–263 (2016)
Razakhova, B.Sh., Sharipbaev, A.A.: Formalization of syntactic rules of the Kazakh language Becтник. Special issue.- Astana: L.N. Gumilyov ENU, pp. 42–50 (2012)
Yergesh, B., Sharipbay, A., Bekmanova, G., Lipnitskii, S.: Sentiment analysis of Kazakh phrases based on morphological rules. Theor. Appl. Sci. Tech. J. 2(38), 39–42 (2016). Kyrgyz State Technical University named after I. Razzakov
Pazelskaya, A., Solovyev, A.: A method of sentiment analysis in Russian texts. In: Dialog (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bekmanova, G., Yelibayeva, G., Aubakirova, S., Dyussupova, N., Sharipbay, A., Nyazova, R. (2019). Methods for Analyzing Polarity of the Kazakh Texts Related to the Terrorist Threats. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-24289-3_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24288-6
Online ISBN: 978-3-030-24289-3
eBook Packages: Computer ScienceComputer Science (R0)