Metalanguage and Knowledgebase for Kazakh Morphology | SpringerLink
Skip to main content

Metalanguage and Knowledgebase for Kazakh Morphology

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

Currently, the volume of various information resources in the Turkic languages is increasing. Processing of such resources requires thesauri and corpora created using a single metalanguage (tagging language) and the knowledge base of subject areas. This article proposes a meta-language of the morphological concepts of the Turkic languages on the example of the Kazakh language, which was used to create the knowledge base of the morphology of the Kazakh language in the Protégé environment. The results of the work were used to develop software applications for semantic search and knowledge extraction, as well as an assessment of knowledge applications on the morphology of the Kazakh language in the e-learning system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bekmanova, G., et al.: A uniform morphological analyzer for the Kazakh and Turkish languages. In: Proceedings of the Sixth International Conference on Analysis of Images, Social Networks and Texts, Moscow, Russia, pp. 20–30 (2017)

    Google Scholar 

  2. Zhetkenbay, L., Sharipbay, A.A., Bekmanova, G.T., Kazhymukhan, D., Kamanur, U.: Comparison of the morphological rules of the Kazakh and Turkish languages. J. Math. Mech. Comput. Sci. 100(4), 42–51 (2018)

    Article  Google Scholar 

  3. Sharipbaev, A.A., Bekmanova, G.T., Buribayeva, A.K., Yergesh, B.Zh., Mukanova, A.S., Kaliyev, A.K.: Semantic neural network model of morphological rules of the agglutinative languages. In: Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, The 13th International Symposium on Advanced Intelligent Systems, Kobe, Japan, pp. 1094–1099 (2012)

    Google Scholar 

  4. Tsukanova N.I.: Ontological model for knowledge representation and organization, Moscow (2015)

    Google Scholar 

  5. Smekhun Y.A.: Ontologies in the knowledge based systems: possibilities of their application. Int. Res. J. https://doi.org/10.18454/IRJ.2016.47.086. Accessed 25 Feb 2019

  6. Protégé. http://protege.stanford.edu. Accessed 10 Mar 2019

  7. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum Comput Stud. 43(5–6), 907–928 (1995)

    Article  Google Scholar 

  8. Zalevskaya A.A.: Introduction to Psycholinguistics: A Textbook. Moscow (2000)

    Google Scholar 

  9. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: the Penn Treebank. Comput. Ling. pp. 313–330 (1993)

    Google Scholar 

  10. Garside, R.: The CLAWS word-tagging System. In: Garside, R., Leech, G., Sampson, G. (eds.) The Computational Analysis of English: A Corpus-based Approach. Longman, London (1987)

    Google Scholar 

  11. The Open American National Corpus. http://www.anc.org. Accessed 10 Dec 2018

  12. Ide, N.: The American national corpus: then, now, and tomorrow. In: Selected Proceedings of the 2008 HCSNet Workshop on Designing the Australian National Corpus: Mustering Languages, Cascadilla Proceedings Project, Sommerville, MA (2008)

    Google Scholar 

  13. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing. Computational Linguistics and Speech Recognition. 2nd edn. Prentice-Hall (2009)

    Google Scholar 

  14. Indurkhya, N., Damerau, F.J.: Handbook of Natural Language Processing. 2nd edn. Chapman & Hall/CRC (2010)

    Google Scholar 

  15. Kazakh Language Corpus. http://kazcorpus.kz/. Accessed 10 Dec 2018

  16. Makhambetov, O., Makazhanov, A., Yessenbayev, Zh., Matkarimov, B., Sabyrgaliyev, I., Sharafudinov, A.:. Assembling the Kazakh language corpus. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1022–1031 (2013)

    Google Scholar 

  17. Madiyeva, G.B., Umatova, ZhM: About Almaty Corpus of the Kazakh language KazNU messenger. “Pholology” Series 5(157), 99–103 (2015)

    Google Scholar 

  18. Tatar National corpus “Tugan tel”. http://tugantel.tatar. Accessed 10 Dec 2018

  19. Galieva, A., Khakimov, B., Gatiatullin A.: On the way to the relevant grammatical tagset for the tatar national corpus. In: 8th International Conference on Corpus Linguistics, Málaga, Spain, pp. 121–129 (2016)

    Google Scholar 

  20. Turkish National Corpus (TNC). http://www.tnc.org.tr/. Accessed 10 Dec 2018

  21. Kubedinova, L., Gatiatullin, A.: Morphological tagging of crimean tatar electronic corpus. In: Proceedings of the international conference “Turkic languages processing”, Kazan, Tatarstan, pp. 331–337 (2015)

    Google Scholar 

  22. Zheltov, P.: Morphological annotation system for the national corpus of the chuvash language. In: Proceedings of the international conference “Turkic languages processing”, Kazan, Tatarstan, pp. 328–331 (2015)

    Google Scholar 

  23. Bekmanova, G., Sharipbay, A., Omarbekova, A., Yelibayeva G., Yergesh B.: Adequate assessment of the customers’ actual reviews through comparing them with the fake ones. In: Proceedings of 2017 International Conference on Engineering & Technology (ICET 2017), Antalya, Turkey (2017). ISBN: 978-1-5386-1949-0

    Google Scholar 

  24. Yergesh, B., Mukanova, A., Sharipbay, A., Bekmanova, G., Razakhova, B.: Semantic hyper-graph based representation of nouns in the Kazakh language. Computacion y Sistemas 18(3), 627–635 (2014)

    Google Scholar 

  25. Mukanova, A., Yergesh, B., Bekmanova, G., Razakhova, B., Sharipbay, A.: Formal models of nouns in the Kazakh language. Leonardo Electron. J. Practices Technol. 13(25), 264–273 (2014)

    Google Scholar 

  26. Aripov, M., Sharipbay, A., Abdurakhmonova, N., Razakhova B.: Ontology of grammar rules as example of noun of Uzbek and Kazakh languages. In: Abstract of the VI International Conference “Modern Problems of Applied Mathematics and Information Technology - Al-Khorezmiy 2018”, pp. 37–38, Tashkent, Uzbekistan (2018)

    Google Scholar 

  27. Sharipbay, A., Yergesh, B., Yelibayeva, G., Israilova, N., Bakasova, P., Zhetkenbay L.: Ontological models matching of nouns of Kazakh and Kyrgyz languages. In: Proceedings of the International Conference on Computer Processing of Turkic Languages, Tashkent, Uzbekistan, pp. 182–188 (2018)

    Google Scholar 

  28. Zhetkenbay, L., Sharipbay, A., Bekmanova, G., Kamanur, U.: Ontological modeling of morphological rules for the adjectives in Kazakh and Turkish languages. J. Theor. Appl. Inf. Technol. 91(2), 257–263 (2016)

    Google Scholar 

  29. Momynova, B.K., Satkenova, ZhB: Morphology of the Kazakh language: a teaching aid. Almaty, Kazakhstan (2014)

    Google Scholar 

  30. Yskakov, A.: Modern Kazakh Language, 2 edn. Almaty, Kazakhstan (1991)

    Google Scholar 

  31. The Kazakh grammar. Phonetics, word formation, morphology, syntax. Astana, Kazakhstan (2002)

    Google Scholar 

  32. Institute of State language development: The Kazakh Language (Short grammar reference book). Almaty, Kazakhstan (2010)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the grant financing for scientific and technical programs and projects by the Ministry of Science and Education of the Republic of Kazakhstan (Grant No. AP05132249, 2018–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaziza Yelibayeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yelibayeva, G., Mukanova, A., Sharipbay, A., Zulkhazhav, A., Yergesh, B., Bekmanova, G. (2019). Metalanguage and Knowledgebase for Kazakh Morphology. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics