Multi-party Quantum Communication Complexity on Composite Boolean-Valued Function | SpringerLink
Skip to main content

Multi-party Quantum Communication Complexity on Composite Boolean-Valued Function

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11635))

Included in the following conference series:

  • 2234 Accesses

Abstract

The performance of communication complexity depends on the selected computation model. Even on the specific model the quantum communication complexity is not always better than the classical one. This paper investigates the quantum communication complexity based on a multi-party computation model of the composite Boolean-valued function. On this model we design a quantum distributed algorithm to obtain the upper bound of quantum communication complexity. The result shows that the performance gap between quantum and classical communication complexity depends on the infinity order of function domain’s square root and users’ number. In the best situation the performance of the quantum communication complexity wins the quadratic level of advantage than the classical one. And sometimes the classical way is more efficient than the quantum one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yao, A.C.-C.: Some complexity questions related to distributed computing. In: Proceedings of the 11th Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 209–213 (1979)

    Google Scholar 

  2. Huang, W., Shi, Y., Zhang, S., et al.: The communication complexity of the Hamming distance problem. Inf. Process. Lett. 99(4), 149–153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jain, R.: Communication complexity of remote state preparation with entanglement. Quantum Inf. Comput. 6(4–5), 461–464 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Gavinsky, D., Kempe J., Kerenidis, I., et al.: Exponential separations for one-way quantum communication complexity with applications to cryptography. In: STOC 2007: Proceedings of the 39th Annual ACM Symposium on Theory of Computing: 11–13 June 2007, San Diego, California, USA, pp. 516–525 (2007)

    Google Scholar 

  5. Montanaro, A.: A new exponential separation between quantum and classical one-way communication complexity. Quantum Inf. Comput. 11(7–8), 574–591 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Klauck, H.: One-way communication complexity and the Nečiporuk lower bound on formula size. SIAM J. Comput. 37(2), 552–583 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Montanaro, A., Winter, A.: A lower bound on entanglement-assisted quantum communication complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 122–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_13

    Chapter  Google Scholar 

  8. Klauck, H.: Lower bounds for quantum communication complexity. SIAM J. Comput. 37(1), 20–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jain, R., Zhang, S.: New bounds on classical and quantum one-way communication complexity. Theor. Comput. Sci. 410(26), 2463–2477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jain, R., Klauck, H.: The partition bound for classical communication complexity and query complexity. 25th Annual IEEE Conference on Computational Complexity – CCC, Boston, Massachusetts, USA, 9–12 June 2010, pp. 247–258 (2010)

    Google Scholar 

  11. Kaplan, M., Laplante, S.: Kolmogorov complexity and combinatorial methods in communication complexity. Theor. Comput. Sci. 412(23), 2524–2535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sherstov, A.A.: The unbounded-error communication complexity of symmetric functions. Combinatorica 31(5), 583–614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cleve, R., Van Dam, W., Nielsen, M., et al.: Quantum entanglement and the communication complexity of the inner product function. Theor. Comput. Sci. 486, 11–19 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tavakoli, A., Anwer, H., Hameedi, A., et al.: Quantum communication complexity using the quantum Zeno effect. Phys. Rev. A 92, 012303 (2015)

    Article  Google Scholar 

  15. Baumeler, A., Broadbent, A.: Quantum private information retrieval has linear communication complexity. J. Cryptol. 28(1), 161–175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kerenidis, I.: Quantum multiparty communication complexity and circuit lower bounds. Math. Struct. Comput. Sci. 19(1), 119–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, T., Schechtmsn, G., Shraibman, A.: Lower bounds on quantum multiparty communication complexity. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity, Paris, France, 15–18 July 2009, pp. 254–262 (2009)

    Google Scholar 

  18. Beame, P., Huynh, T.: Multiparty communication complexity and threshold circuit size of AC (0). SIAM J. Comput. 41(3), 484–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Villagra, M., Nakanishi, M., Yamashita, S., et al.: Tensor rank and strong quantum nondeterminism in multiparty communication. IEICE Trans. Inf. Syst. E96d(1), 1–8 (2013)

    Article  MATH  Google Scholar 

  20. Trojek, P., Schmid, C., Bourennane, M., et al.: Experimental multipartner quantum communication complexity employing just one qubit. Nat. Comput. 12(1), 19–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grover, L.K.: Quantum mechanism helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  Google Scholar 

  22. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information, 7th edn, pp. 171–271. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  23. Francois, L.G., Shogo, N.: Multiparty quantum communication complexity of triangle finding. In: 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (2017). https://doi.org/10.4230/lipics.tqc.2017.6

  24. Shima, B.H., Ashwin, N., Renato, R.: Communication complexity of one-shot remote state preparation. IEEE Trans. Inf. Theory 64(7), 4709–4728 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mingming, W., Chen, Y., Reza, M.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC: Comput. Mater. Continua 55(2), 321–329 (2018)

    Google Scholar 

  26. Faguo, W., Xiao, Z., Wang, Y., Zhiming, Z., Lipeng, X., Wanpeng, L.: An advanced quantum-resistant signature scheme for cloud based on Eisenstein ring. CMC: Comput. Mater. Continua 56(1), 19–34 (2018)

    Google Scholar 

Download references

Acknowledgement

Supported by the National Natural Science Foundation of China under Grant Nos. 61501247, 61373131 and 61702277, the Six Talent Peaks Project of Jiangsu Province (Grant No. 2015-XXRJ-013), Natural Science Foundation of Jiangsu Province (Grant No. BK20171458), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (China under Grant No. 16KJB520030), the NUIST Research Foundation for Talented Scholars under Grant Nos. 2015r014. Partially supported by the China-USA Computer Science Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, W., Dong, Z., Liu, W., Qu, Z., Xu, X., Liu, A.X. (2019). Multi-party Quantum Communication Complexity on Composite Boolean-Valued Function. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11635. Springer, Cham. https://doi.org/10.1007/978-3-030-24268-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24268-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24267-1

  • Online ISBN: 978-3-030-24268-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics