Self-organized Collective Motion with a Simulated Real Robot Swarm | SpringerLink
Skip to main content

Self-organized Collective Motion with a Simulated Real Robot Swarm

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11649))

Included in the following conference series:

Abstract

Collective motion is one of the most fascinating phenomena observed in nature. In the last decade, it aroused so much attention in physics, control and robotics fields. In particular, many studies have been done in swarm robotics related to collective motion, also called flocking. In most of these studies, robots use orientation and proximity of their neighbors to achieve collective motion. In such an approach, one of the biggest problems is to measure orientation information using on-board sensors. In most of the studies, this information is either simulated or implemented using communication. In this paper, we implemented a fully autonomous coordinated motion without alignment using very simple Mona robots. We used an approach based on Active Elastic Sheet (AES) method. We modified the method and added the capability to enable the swarm to move toward a desired direction and rotate about an arbitrary point. The parameters of the modified method are optimized using TCACS optimization algorithm. We tested our approach in different settings using Matlab and Webots.

This work was supported by EPSRC Impact Acceleration Account (EP/R511626/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arboleda-Estudillo, Y., Krieg, M., Stühmer, J., Licata, N.A., Muller, D.J., Heisenberg, C.P.: Movement directionality in collective migration of germ layer progenitors. Curr. Biol. 20(2), 161–169 (2010)

    Article  Google Scholar 

  2. Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robot. Syst. 94, 761–775 (2018)

    Google Scholar 

  3. Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)

    Article  Google Scholar 

  4. Bajec, I.L., Heppner, F.H.: Organized flight in birds. Anim. Behav. 78(4), 777–789 (2009)

    Article  Google Scholar 

  5. Ballerini, M., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237 (2008)

    Article  Google Scholar 

  6. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theoret. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  7. Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Collective motion dynamics of active solids and active crystals. New J. Phys. 15(9), 095011 (2013)

    Article  Google Scholar 

  8. Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 025702 (2004)

    Article  Google Scholar 

  9. Grossman, D., Aranson, I., Jacob, E.B.: Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008)

    Article  Google Scholar 

  10. Karimi, A., Nobahari, H., Siarry, P.: Continuous ant colony system and tabu search algorithms hybridized for global minimization of continuous multi-minima functions. Comput. Optim. Appl. 45(3), 639–661 (2010)

    Article  MathSciNet  Google Scholar 

  11. Kudrolli, A., Lumay, G., Volfson, D., Tsimring, L.S.: Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100(5), 058001 (2008)

    Article  Google Scholar 

  12. Lewandowski, J.R., Sein, J., Blackledge, M., Emsley, L.: Anisotropic collective motion contributes to nuclear spin relaxation in crystalline proteins. J. Am. Chem. Soc. 132(4), 1246–1248 (2009)

    Article  Google Scholar 

  13. Menzel, A.M., Ohta, T.: Soft deformable self-propelled particles. EPL (Europhys. Lett.) 99(5), 58001 (2012)

    Article  Google Scholar 

  14. Michel, O.: Cyberbotics Ltd. Webots\(^{\rm TM}\): professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)

    Google Scholar 

  15. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. 108(17), 6884–6888 (2011)

    Article  Google Scholar 

  16. Pourtakdoust, S.H., Nobahari, H.: An extension of ant colony system to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28646-2_27

    Chapter  Google Scholar 

  17. Romanczuk, P., Couzin, I.D., Schimansky-Geier, L.: Collective motion due to individual escape and pursuit response. Phys. Rev. Lett. 102(1), 010602 (2009)

    Article  Google Scholar 

  18. Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A.R.: Polar patterns of driven filaments. Nature 467(7311), 73 (2010)

    Article  Google Scholar 

  19. Siarry, P., Berthiau, G.: Fitting of tabu search to optimize functions of continuous variables. Int. J. Numer. Methods Eng. 40(13), 2449–2457 (1997)

    Article  MathSciNet  Google Scholar 

  20. Sokolov, A., Aranson, I.S., Kessler, J.O., Goldstein, R.E.: Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98(15), 158102 (2007)

    Article  Google Scholar 

  21. Suematsu, N.J., Nakata, S., Awazu, A., Nishimori, H.: Collective behavior of inanimate boats. Phys. Rev. E 81(5), 056210 (2010)

    Article  Google Scholar 

  22. Vicsek, T.: Fluctuations and Scaling in Biology. Oxford University Press, New York (2001)

    Google Scholar 

  23. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)

    Article  Google Scholar 

  24. Ward, A.J., Sumpter, D.J., Couzin, I.D., Hart, P.J., Krause, J.: Quorum decision-making facilitates information transfer in fish shoals. Proc. Natl. Acad. Sci. 105(19), 6948–6953 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Arvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raoufi, M., Turgut, A.E., Arvin, F. (2019). Self-organized Collective Motion with a Simulated Real Robot Swarm. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23807-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23806-3

  • Online ISBN: 978-3-030-23807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics