Abstract
Collective motion is one of the most fascinating phenomena observed in nature. In the last decade, it aroused so much attention in physics, control and robotics fields. In particular, many studies have been done in swarm robotics related to collective motion, also called flocking. In most of these studies, robots use orientation and proximity of their neighbors to achieve collective motion. In such an approach, one of the biggest problems is to measure orientation information using on-board sensors. In most of the studies, this information is either simulated or implemented using communication. In this paper, we implemented a fully autonomous coordinated motion without alignment using very simple Mona robots. We used an approach based on Active Elastic Sheet (AES) method. We modified the method and added the capability to enable the swarm to move toward a desired direction and rotate about an arbitrary point. The parameters of the modified method are optimized using TCACS optimization algorithm. We tested our approach in different settings using Matlab and Webots.
This work was supported by EPSRC Impact Acceleration Account (EP/R511626/1).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arboleda-Estudillo, Y., Krieg, M., Stühmer, J., Licata, N.A., Muller, D.J., Heisenberg, C.P.: Movement directionality in collective migration of germ layer progenitors. Curr. Biol. 20(2), 161–169 (2010)
Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robot. Syst. 94, 761–775 (2018)
Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)
Bajec, I.L., Heppner, F.H.: Organized flight in birds. Anim. Behav. 78(4), 777–789 (2009)
Ballerini, M., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237 (2008)
Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theoret. Biol. 218(1), 1–11 (2002)
Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Collective motion dynamics of active solids and active crystals. New J. Phys. 15(9), 095011 (2013)
Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 025702 (2004)
Grossman, D., Aranson, I., Jacob, E.B.: Emergence of agent swarm migration and vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008)
Karimi, A., Nobahari, H., Siarry, P.: Continuous ant colony system and tabu search algorithms hybridized for global minimization of continuous multi-minima functions. Comput. Optim. Appl. 45(3), 639–661 (2010)
Kudrolli, A., Lumay, G., Volfson, D., Tsimring, L.S.: Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100(5), 058001 (2008)
Lewandowski, J.R., Sein, J., Blackledge, M., Emsley, L.: Anisotropic collective motion contributes to nuclear spin relaxation in crystalline proteins. J. Am. Chem. Soc. 132(4), 1246–1248 (2009)
Menzel, A.M., Ohta, T.: Soft deformable self-propelled particles. EPL (Europhys. Lett.) 99(5), 58001 (2012)
Michel, O.: Cyberbotics Ltd. Webots\(^{\rm TM}\): professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)
Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. 108(17), 6884–6888 (2011)
Pourtakdoust, S.H., Nobahari, H.: An extension of ant colony system to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28646-2_27
Romanczuk, P., Couzin, I.D., Schimansky-Geier, L.: Collective motion due to individual escape and pursuit response. Phys. Rev. Lett. 102(1), 010602 (2009)
Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A.R.: Polar patterns of driven filaments. Nature 467(7311), 73 (2010)
Siarry, P., Berthiau, G.: Fitting of tabu search to optimize functions of continuous variables. Int. J. Numer. Methods Eng. 40(13), 2449–2457 (1997)
Sokolov, A., Aranson, I.S., Kessler, J.O., Goldstein, R.E.: Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98(15), 158102 (2007)
Suematsu, N.J., Nakata, S., Awazu, A., Nishimori, H.: Collective behavior of inanimate boats. Phys. Rev. E 81(5), 056210 (2010)
Vicsek, T.: Fluctuations and Scaling in Biology. Oxford University Press, New York (2001)
Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)
Ward, A.J., Sumpter, D.J., Couzin, I.D., Hart, P.J., Krause, J.: Quorum decision-making facilitates information transfer in fish shoals. Proc. Natl. Acad. Sci. 105(19), 6948–6953 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Raoufi, M., Turgut, A.E., Arvin, F. (2019). Self-organized Collective Motion with a Simulated Real Robot Swarm. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-23807-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23806-3
Online ISBN: 978-3-030-23807-0
eBook Packages: Computer ScienceComputer Science (R0)