Abstract
We have recently used a symbolic reachability method for controlling the stability of special hybrid systems called “sampled switched systems”. We show here how the method can be extended in order to control the stability of more general hybrid systems with guard conditions and state resets. We illustrate the method through the example of a biped robot with 6 state variables, using a proportional-derivative (PD) controller. More specifically, we isolate a state region R such that, starting from a state located in R just after a footstep, the PD-control makes the robot state return to R at the end of the following footstep.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Actually, the boxes are not all of the same size, but are generated according to an adaptative tiling procedure (see Sect. 3.3).
- 2.
Condition (1) is true a first time when the legs are parallel, but we ignore such a “scuffing” and assume the swing leg to continue without collision.
- 3.
The expression \(e_{\max }\) differs for each k, and the notation should be \(e_{\max }^k\), but the upper index k is dropped for the sake of simplicity.
- 4.
References
Agrawal, A., et al.: First steps towards translating HZD control of bipedal robots to decentralized control of exoskeletons. IEEE Access 5, 9919–9934 (2017)
Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008, Cancún, Mexico, pp. 4042–4048 (2008)
Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18
Alexandre dit Sandretto, J.A., Chapoutot, A., Mullier, O.: Tuning PI controller in non-linear uncertain closed-loop systems with interval analysis. In: 2nd International Workshop on Synthesis of Complex Parameters (SynCoP 2015). OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, vol. 44, pp. 91–102 (2015)
Feng, S., Amur, S.A.Y., Sun, Z.: Biped walking on level ground with torso using only one actuator. Sci. China Inf. Sci. 56(11), 1–9 (2013)
Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30
Fribourg, L., Kühne, U., Soulat, R.: Finite controlled invariants for sampled switched systems. Formal Methods Syst. Des. 45(3), 303–329 (2014)
Fribourg, L., Soulat, R.: Control of Switching Systems by Invariance Analysis: Application to Power Electronics, 144 p. Wiley-ISTE (2013)
Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_19
Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems reachability analysis. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 215–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1_16
Hussien, O., Ames, A.D., Tabuada, P.: Abstracting partially feedback linearizable systems compositionally. IEEE Control Syst. Lett. 1(2), 227–232 (2017)
Kühn, W.: Zonotope dynamics in numerical quality control. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, pp. 125–134. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03567-2_10
Kühne, U., Soulat, R.: MINIMATOR 1.0 (2015). https://bitbucket.org/ukuehne/minimator/overview
McGeer, T.: Passive dynamic walking. Int. J. Rob. Res. 9(2), 62–82 (1990)
Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach, 1st edn. Springer, New York (2009). https://doi.org/10.1007/978-1-4419-0224-5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Le Coënt, A., Fribourg, L. (2019). Controlled Recurrence of a Biped with Torso. In: Chamberlain, R., Taha, W., Törngren, M. (eds) Cyber Physical Systems. Model-Based Design. CyPhy WESE 2018 2018. Lecture Notes in Computer Science(), vol 11615. Springer, Cham. https://doi.org/10.1007/978-3-030-23703-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-23703-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23702-8
Online ISBN: 978-3-030-23703-5
eBook Packages: Computer ScienceComputer Science (R0)