Architecture Search for Image Inpainting | SpringerLink
Skip to main content

Architecture Search for Image Inpainting

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2019 (ISNN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11554))

Included in the following conference series:

Abstract

Neural Architecture Search (NAS) shows the ability to automate the architecture engineering for specific tasks recently which is extremely promising. Many published works apply reinforcement learning or evolutionary algorithm to design the neural architecture for image classification and achieve state-of-the-art performance. However, using NAS to perform other challenging tasks, such as inpainting irregular regions in an image, has not been explored yet. The target of image inpainting is to generate plausible image regions to fill the missing regions in the original image. It has been widely used in many applications. In this paper, we are interested in applying neural architecture search methods to image inpainting tasks. We propose to use reinforcement learning to automatically design the network architecture. Our method can efficiently explore new network structure based on existing architecture. The experiment result demonstrates that the proposed method can design an efficient and high-quality architecture for image inpainting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

    Google Scholar 

  2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. CoRR abs/1611.02167 (2016)

    Google Scholar 

  3. Ballester, C., Bertalmío, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Google Scholar 

  4. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24:1–24:11 (2009)

    Google Scholar 

  5. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image in painting. In: SIGGRAPH, pp. 417–424. ACM (2000)

    Google Scholar 

  6. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: AAAI, pp. 2787–2794. AAAI Press (2018)

    Google Scholar 

  7. Cai, H., Yang, J., Zhang, W., Han, S., Yu, Y.: Path-level network transformation for efficient architecture search. In: JMLR Workshop and Conference Proceedings, ICML, vol. 80, pp. 677–686. JMLR.org (2018)

    Google Scholar 

  8. Chen, T., Goodfellow, I.J., Shlens, J.: Net2Net: accelerating learning via knowledge transfer. In: ICLR (2016)

    Google Scholar 

  9. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH, pp. 341–346. ACM (2001)

    Google Scholar 

  10. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV, pp. 1033–1038 (1999)

    Google Scholar 

  11. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1(1), 47–62 (2008)

    Google Scholar 

  12. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4), 107:1–107:14 (2017)

    Google Scholar 

  13. Köhler, R., Schuler, C., Schölkopf, B., Harmeling, S.: Mask-specific inpainting with deep neural networks. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 523–534. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_43

    Google Scholar 

  14. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Google Scholar 

  15. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Google Scholar 

  16. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: ICLR (2018)

    Google Scholar 

  17. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: JMLR Workshop and Conference Proceedings, ICML, vol. 80, pp. 4092–4101. JMLR.org (2018)

    Google Scholar 

  18. Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of Machine Learning Research, ICML, vol. 70, pp. 2902–2911. PMLR (2017)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Google Scholar 

  20. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Google Scholar 

  21. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: IJCAI, pp. 5369–5373. ijcai.org (2018)

    Google Scholar 

  22. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: ACL (1), pp. 1556–1566. The Association for Computer Linguistics (2015)

    Google Scholar 

  23. Xu, L., Ren, J.S.J., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: NIPS, pp. 1790–1798 (2014)

    Google Scholar 

  24. Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-Net: image inpainting via deep feature rearrangement. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_1

    Google Scholar 

  25. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image in painting with contextual attention. In: CVPR, pp. 5505–5514. IEEE Computer Society (2018)

    Google Scholar 

  26. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.: Practical block-wise neural network architecture generation. In: CVPR, pp. 2423–2432. IEEE Computer Society (2018)

    Google Scholar 

  27. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. CoRR abs/1611.01578 (2016)

    Google Scholar 

  28. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR, pp. 8697–8710. IEEE Computer Society (2018)

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (No. CUHK 14208815 of the General Research Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoman Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., King, I. (2019). Architecture Search for Image Inpainting. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11554. Springer, Cham. https://doi.org/10.1007/978-3-030-22796-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22796-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22795-1

  • Online ISBN: 978-3-030-22796-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics