Abstract
Neural Architecture Search (NAS) shows the ability to automate the architecture engineering for specific tasks recently which is extremely promising. Many published works apply reinforcement learning or evolutionary algorithm to design the neural architecture for image classification and achieve state-of-the-art performance. However, using NAS to perform other challenging tasks, such as inpainting irregular regions in an image, has not been explored yet. The target of image inpainting is to generate plausible image regions to fill the missing regions in the original image. It has been widely used in many applications. In this paper, we are interested in applying neural architecture search methods to image inpainting tasks. We propose to use reinforcement learning to automatically design the network architecture. Our method can efficiently explore new network structure based on existing architecture. The experiment result demonstrates that the proposed method can design an efficient and high-quality architecture for image inpainting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)
Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. CoRR abs/1611.02167 (2016)
Ballester, C., Bertalmío, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)
Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24:1–24:11 (2009)
Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image in painting. In: SIGGRAPH, pp. 417–424. ACM (2000)
Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: AAAI, pp. 2787–2794. AAAI Press (2018)
Cai, H., Yang, J., Zhang, W., Han, S., Yu, Y.: Path-level network transformation for efficient architecture search. In: JMLR Workshop and Conference Proceedings, ICML, vol. 80, pp. 677–686. JMLR.org (2018)
Chen, T., Goodfellow, I.J., Shlens, J.: Net2Net: accelerating learning via knowledge transfer. In: ICLR (2016)
Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH, pp. 341–346. ACM (2001)
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV, pp. 1033–1038 (1999)
Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1(1), 47–62 (2008)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4), 107:1–107:14 (2017)
Köhler, R., Schuler, C., Schölkopf, B., Harmeling, S.: Mask-specific inpainting with deep neural networks. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 523–534. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_43
Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2
Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6
Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. In: ICLR (2018)
Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: JMLR Workshop and Conference Proceedings, ICML, vol. 80, pp. 4092–4101. JMLR.org (2018)
Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of Machine Learning Research, ICML, vol. 70, pp. 2902–2911. PMLR (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)
Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: IJCAI, pp. 5369–5373. ijcai.org (2018)
Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: ACL (1), pp. 1556–1566. The Association for Computer Linguistics (2015)
Xu, L., Ren, J.S.J., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: NIPS, pp. 1790–1798 (2014)
Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-Net: image inpainting via deep feature rearrangement. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_1
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image in painting with contextual attention. In: CVPR, pp. 5505–5514. IEEE Computer Society (2018)
Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.: Practical block-wise neural network architecture generation. In: CVPR, pp. 2423–2432. IEEE Computer Society (2018)
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. CoRR abs/1611.01578 (2016)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR, pp. 8697–8710. IEEE Computer Society (2018)
Acknowledgments
The work described in this paper was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (No. CUHK 14208815 of the General Research Fund).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Y., King, I. (2019). Architecture Search for Image Inpainting. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11554. Springer, Cham. https://doi.org/10.1007/978-3-030-22796-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-22796-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22795-1
Online ISBN: 978-3-030-22796-8
eBook Packages: Computer ScienceComputer Science (R0)