Abstract
This paper examines two approaches to improve the realism of volume scattering functions. The first uses a convex combination of multiple Henyey-Greenstein distributions to approximate a more complicated scattering distribution, while the second allows negative coefficients. The former is already supported in some renderers, the latter is not and carries a significant performance penalty. Chromatic scattering is also explored, and found to be beneficial in some circumstances. Source code is publicly available under an open-source license.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blender Foundation. https://www.blender.org/foundation/
Alefeld, G.E., Potra, F.A., Shi, Y.: Algorithm 748: enclosing zeros of continuous functions. ACM Trans. Math. Softw. 21(3), 327–344 (1995)
Bitterli, B., et al.: A radiative transfer framework for non-exponential media. In: SIGGRAPH Asia 2018 Technical Papers on - SIGGRAPH Asia 2018, pp. 1–17. ACM Press, Tokyo (2018)
Bouthors, A., Neyret, F., Max, N., Bruneton, E., Crassin, C.: Interactive multiple anisotropic scattering in clouds, p. 173. ACM Press (2008)
Burley, B., et al.: The design and evolution of disney’s hyperion renderer. ACM Trans. Graph. 37(3), 1–22 (2018)
Clarberg, P., Jarosz, W., Akenine-Möller, T., Jensen, H.W.: Wavelet importance sampling: efficiently evaluating products of complex functions, vol. 24, pp. 1166–1175. ACM (2005). http://dx.doi.org/10.1145/1073204.1073328
Deng, Y., Ni, Y., Li, Z., Mu, S., Zhang, W.: Toward real-time ray tracing: a survey on hardware acceleration and microarchitecture techniques. ACM Comput. Surv. 50(4), 1–41 (2017)
Du, H.: Mie-scattering calculation. Appl. Opt. 43(9), 1951–1956 (2004)
Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures, vol. 1. Addison-Wesley, Reading (1963)
Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: emcee: the MCMC hammer. Publ. Astron. Soc. Pacific 125(925), 306–312 (2013). arXiv: 1202.3665
Frisvad, J.R.: Importance sampling the Rayleigh phase function. J. Opt. Soc. Am. A 28(12), 2436 (2011)
Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin, A.: Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32(6), 162:1–162:13 (2013)
Goodman, T.N., Micchelli, C.A., Rodriguez, G., Seatzu, S.: Spectral factorization of Laurent polynomials. Adv. Comput. Math. 7(4), 429–454 (1997)
Gritz, L., Stein, C., Kulla, C., Conty, A.: Open shading language. In: ACM SIGGRAPH 2010 Talks, p. 33. ACM (2010)
Hege, H.C., Höllerer, T., Stalling, D.: Volume Rendering - Mathematicals Models and Algorithmic Aspects, June 1993. https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/499
Heitz, E., Hanika, J., d’Eon, E., Dachsbacher, C.: Multiple-scattering microfacet BSDFs with the Smith model. ACM Trans. Graph. (TOG) 35(4), 58 (2016)
Henyey, L.G., Greenstein, J.L.: Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83 (1941)
Hess, M., Koepke, P., Schult, I.: Optical properties of aerosols and clouds: the software package OPAC. Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998)
Hoffman, M.D., Gelman, A.: The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (2014)
Hornbeck, H., Alim, U.: VSF Database (2019). https://gitlab.com/hjhornbeck/vsf-database, https://doi.org/10.5281/zenodo.2629410
Imageworks, S.P.: Open shading language readme (2018). https://github.com/imageworks/OpenShadingLanguage
Jakob, W.: Mitsuba renderer (2010)
Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. 34(4), 122:1–122:12 (2015)
Mishchenko, M.I., Macke, A.: How big should hexagonal ice crystals be to produce halos? Appl. Opt. 38(9), 1626–1629 (1999)
Newton, R.G.: Scattering Theory of Waves and Particles. Texts and Monographs in Physics, 2nd edn. Springer, New York (1982). https://doi.org/10.1007/978-3-642-88128-2
Scully, M.O., Walther, H., Schleich, W.: Feynman’s approach to negative probability in quantum mechanics. Phys. Rev. A 49(3), 1562–1566 (1994). https://doi.org/10.1103/PhysRevA.49.1562
Spencer, G., Shirley, P., Zimmerman, K., Greenberg, D.P.: Physically-based glare effects for digital images. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1995, pp. 325–334. ACM Press (1995)
Wald, I., et al.: OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017)
Witt, A.N.: Multiple scattering in reflection nebulae. i - a Monte Carlo approach. Astrophys. J. Suppl. Ser. 35, 6 (1977)
Zhang, X., Lewis, M., Lee, M., Johnson, B., Korotaev, G.: The volume scattering function of natural bubble populations. Limnol. Oceanogr. 47(5), 1273–1282 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Hornbeck, H., Alim, U. (2019). Improved Volume Scattering. In: Gavrilova, M., Chang, J., Thalmann, N., Hitzer, E., Ishikawa, H. (eds) Advances in Computer Graphics. CGI 2019. Lecture Notes in Computer Science(), vol 11542. Springer, Cham. https://doi.org/10.1007/978-3-030-22514-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-22514-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22513-1
Online ISBN: 978-3-030-22514-8
eBook Packages: Computer ScienceComputer Science (R0)