Abstract
We propose a functional lifting-based convex relaxation of variational problems with Laplacian-based second-order regularization. The approach rests on ideas from the calibration method as well as from sublabel-accurate continuous multilabeling approaches, and makes these approaches amenable for variational problems with vectorial data and higher-order regularization, as is common in image processing applications. We motivate the approach in the function space setting and prove that, in the special case of absolute Laplacian regularization, it encompasses the discretization-first sublabel-accurate continuous multilabeling approach as a special case. We present a mathematical connection between the lifted and original functional and discuss possible interpretations of minimizers in the lifted function space. Finally, we exemplarily apply the proposed approach to 2D image registration problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alberti, G., Bouchitté, G., Dal Maso, G.: The calibration method for the mumford-shah functional and free-discontinuity problems. Calc. Var. Partial Differ. Equ. 16(3), 299–333 (2003)
Bouchitté, G., Fragalà, I.: A duality theory for non-convex problems in the calculus of variations. Arch. Rational. Mech. Anal. 229(1), 361–415 (2018)
Brehmer, K., Wacker, B., Modersitzki, J.: A novel similarity measure for image sequences. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds.) WBIR 2018. LNCS, vol. 10883, pp. 47–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92258-4_5
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
Chambolle, A.: Convex representation for lower semicontinuous envelopes of functionals in L\(^1\). J. Convex Anal. 8(1), 149–170 (2001)
Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci. 5(4), 1113–1158 (2012)
Fischer, B., Modersitzki, J.: Curvature based image registration. J. Math. Imaging Vis. 18(1), 81–85 (2003)
Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations I. Cartesian Currents, vol. 37. Springer, Heidelberg (1998)
Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations for vector-valued labeling. SIAM J. Imaging Sci. 6(3), 1626–1664 (2013)
Goldstein, T., Esser, E., Baraniuk, R.: Adaptive primal dual optimization for image processing and learning. In: Proceedings 6th NIPS Workshop Optimize Machine Learning (2013)
Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and markov random fields. J. ACM (JACM) 49(5), 616–639 (2002)
Laude, E., Möllenhoff, T., Moeller, M., Lellmann, J., Cremers, D.: Sublabel-accurate convex relaxation of vectorial multilabel energies. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 614–627. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_37
Lellmann, J., Lenzen, F., Schnörr, C.: Optimality bounds for a variational relaxation of the image partitioning problem. J. Math. Imaging Vis. 47(3), 239–257 (2013)
Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2944–2951 (2013)
Loewenhauser, B., Lellmann, J.: Functional lifting for variational problems with higher-order regularization. In: Tai, X.-C., Bae, E., Lysaker, M. (eds.) IVLOPDE 2016. MV, pp. 101–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91274-5_5
Mora, M.G.: The calibration method for free-discontinuity problems on vector-valued maps. J. Convex Anal. 9(1), 1–29 (2002)
Möllenhoff, T., Cremers, D.: Sublabel-accurate discretization of nonconvex free-discontinuity problems. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017
Möllenhoff, T., Laude, E., Moeller, M., Lellmann, J., Cremers, D.: Sublabel-accurate relaxation of nonconvex energies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3948–3956 (2016)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM J. Imaging Sci. 3(4), 1122–1145 (2010)
Strekalovskiy, E., Chambolle, A., Cremers, D.: A convex representation for the vectorial mumford-shah functional. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1712–1719. IEEE (2012)
Strekalovskiy, E., Chambolle, A., Cremers, D.: Convex relaxation of vectorial problems with coupled regularization. SIAM J. Imaging Sci. 7(1), 294–336 (2014)
Acknowledgments
The authors acknowledge support through DFG grant LE 4064/1-1 “Functional Lifting 2.0: Efficient Convexifications for Imaging and Vision” and NVIDIA Corporation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Vogt, T., Lellmann, J. (2019). Functional Liftings of Vectorial Variational Problems with Laplacian Regularization. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-22368-7_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22367-0
Online ISBN: 978-3-030-22368-7
eBook Packages: Computer ScienceComputer Science (R0)