Distributed Vector Representations of Folksong Motifs | SpringerLink
Skip to main content

Distributed Vector Representations of Folksong Motifs

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11502))

Included in the following conference series:

Abstract

This article presents a distributed vector representation model for learning folksong motifs. A skip-gram version of word2vec with negative sampling is used to represent high quality embeddings. Motifs from the Essen Folksong collection are compared based on their cosine similarity. A new evaluation method for testing the quality of the embeddings based on a melodic similarity task is presented to show how the vector space can represent complex contextual features, and how it can be utilized for the study of folksong variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

    MATH  Google Scholar 

  2. Besson, M., Schön, D.: Comparison between language and music. Ann. New York Acad. Sci. 930(1), 232–258 (2001)

    Article  Google Scholar 

  3. Boom, C.D., et al.: Large-scale user modeling with recurrent neural networks for music discovery on multiple time scales. Multimed. Tools Appl. 77, 15385–15407 (2017)

    Article  Google Scholar 

  4. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: Modeling temporal dependencies in high-dimensional sequences: application to polyphonic music generation and transcription. arXiv preprint arXiv:1206.6392 (2012)

  5. Clark, S.: Vector space models of lexical meaning. In: Lappin, S., Fox, C. (eds.) The Handbook of Contemporary Semantic Theory, pp. 463–472. Wiley-Blackwell, Hoboken (2015)

    Google Scholar 

  6. Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. J. New Music Res. 24(1), 51–73 (1995)

    Article  Google Scholar 

  7. Cuthbert, M.S., Ariza, C.: Music21: A toolkit for computer-aided musicology and symbolic music data. In: ISMIR. Utrecht, The Netherlands (2010)

    Google Scholar 

  8. Goldberg, Y., Levy, O.: word2vec explained: deriving mikolov et al’.s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

  9. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)

    Article  Google Scholar 

  10. Herremans, D., Chuan, C.H.: Modeling musical context with word2vec. arXiv preprint arXiv:1706.09088 (2017)

  11. Huang, C.Z.A., Duvenaud, D., Gajos, K.Z.: Chordripple: recommending chords to help novice composers go beyond the ordinary. In: Proceedings of the 21st International Conference on Intelligent User Interfaces, pp. 241–250. ACM, Sonoma (2016)

    Google Scholar 

  12. Janssen, B., van Kranenburg, P., Volk, A.: Finding occurrences of melodic segments in folk songs employing symbolic similarity measures. J. New Music Res. 46(2), 118–134 (2017)

    Article  Google Scholar 

  13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  14. Mikolov, T., Kopecky, J., Burget, L., Glembek, O., et al.: Neural network based language models for highly inflective languages. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 4725–4728. IEEE, Taipei (2009)

    Google Scholar 

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119. Lake Tahoe, Nevada (2013)

    Google Scholar 

  16. Müllensiefen, D., Frieler, K., et al.: Cognitive adequacy in the measurement of melodic similarity: algorithmic vs. human judgments. Comput. Musicology 13(2003), 147–176 (2004)

    Google Scholar 

  17. Nettl, B.: An ethnomusicologist contemplates universals in musical sound and musical culture. In: Brown, S., Nils, L., Wallin, B.M. (eds.) The Origins of Music, pp. 463–472. MIT Press, Cambridge (2000)

    Google Scholar 

  18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)

    Article  Google Scholar 

  19. Savage, P.E., Brown, S., Sakai, E., Currie, T.E.: Statistical universals reveal the structures and functions of human music. Proc. National Acad. Sci. 112(29), 8987–8992 (2015)

    Article  Google Scholar 

  20. Schaffrath, H., Huron, D.: The essen folksong collection in the humdrum kern format. Technical report, Center for Computer Assisted Research in the Humanities, Menlo Park, CA, USA (1995)

    Google Scholar 

  21. Scherrer, D.K., Scherrer, P.H.: An experiment in the computer measurement of melodic variation in folksong. J. Am. Folklore 84(332), 230–241 (1971)

    Article  Google Scholar 

  22. Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for unsupervised word embeddings. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 298–307. Lisbon, Portugal (2015)

    Google Scholar 

  23. Toiviainen, P., Eerola, T.: A computational model of melodic similarity based on multiple representations and self-organizing maps. In: Proceedings of the seventh international conference on music perception and cognition, Sydney. Causal Productions, Adelaide, pp. 236–239 (2002)

    Google Scholar 

  24. Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37, 141–188 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Gómez-Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arronte Alvarez, A., Gómez-Martin, F. (2019). Distributed Vector Representations of Folksong Motifs. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21392-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21391-6

  • Online ISBN: 978-3-030-21392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics