Resource-Aware Data Stream Mining Using the Restricted Boltzmann Machine | SpringerLink
Skip to main content

Resource-Aware Data Stream Mining Using the Restricted Boltzmann Machine

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

In this paper, we consider the problem of data stream mining with an application of the Restricted Boltzmann Machine (RBM). If the data incoming rate is very fast, an appropriate algorithm should be resource-aware and work as fast as possible. Two RBM learning algorithms are investigated, i.e. the Contrastive Divergence and the Persistent Contrastive Divergence. We test three strategies for dealing with a buffer overflow in the case of high-speed data streams: load shedding, minibatch resizing, and controlling the number of Gibbs steps in the learning algorithm. Considered approaches are verified on the real MNIST dataset which is treated as a part of a data stream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akdeniz, E., Egrioglu, E., Bas, E., Yolcu, U.: An ARMA type Pi-Sigma artificial neural network for nonlinear time series forecasting. J. Artif. Intell. Soft Comput. Res. 8(2), 121–132 (2018)

    Article  Google Scholar 

  2. Dias de Assunçao, M., da Silva Veith, A., Buyya, R.: Distributed data stream processing and edge computing: a survey on resource elasticity and future directions. J. Netw. Comput. Appl. 103, 1–17 (2018)

    Article  Google Scholar 

  3. Babcock, B., Datar, M., Motwani, R.: Load shedding techniques for data stream systems. In: Proceedings of the 2003 Workshop on Management and Processing of Data Streams (2003)

    Google Scholar 

  4. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  Google Scholar 

  5. Bengio, Y., Delalleau, O.: Justifying and generalizing contrastive divergence. Neural Comput. 21(6), 1601–1621 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bertini Junior, J.R., do Carmo Nicoletti, M.: An iterative boosting-based ensemble for streaming data classification. Inf. Fusion 45, 66–78 (2019)

    Article  Google Scholar 

  7. Bifet, A.: Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams. Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, Berlin (2010)

    Google Scholar 

  8. Bifet, A., et al.: Extremely fast decision tree mining for evolving data streams. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1733–1742. ACM, New York (2017)

    Google Scholar 

  9. Bilski, J., Kowalczyk, B., Grzanek, K.: The parallel modification to the Levenberg-Marquardt algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 15–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_2

    Chapter  Google Scholar 

  10. Bilski, J., Wilamowski, B.M.: Parallel learning of feedforward neural networks without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 57–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_6

    Chapter  Google Scholar 

  11. Carreira-Perpinan, M.A., Hinton, G.E.: On contrastive divergence learning (2005)

    Google Scholar 

  12. Chi, Y., Wang, H., Yu, P.S.: Loadstar: load shedding in data stream mining. In: Proceedings of the International Conference on Very Large Data Bases, pp. 1302–1305 (2005)

    Google Scholar 

  13. Devi, V.S., Meena, L.: Parallel MCNN (PMCNN) with application to prototype selection on large and streaming data. J. Artif. Intell. Soft Comput. Res. 7(3), 155–169 (2017)

    Article  Google Scholar 

  14. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

  15. Duda, P., Rutkowski, L., Jaworski, M., Rutkowska, D.: On the parzen kernel-based probability density function learning procedures over time-varying streaming data with applications to pattern classification. IEEE Trans. Cybern. 1–14 (2018). https://ieeexplore.ieee.org/document/8536871

  16. Duda, P., Jaworski, M., Rutkowski, L.: Convergent time-varying regression models for data streams: tracking concept drift by the recursive parzen-based generalized regression neural networks. Int. J. Neural Syst. 28(02), 1750048 (2018)

    Article  Google Scholar 

  17. Duda, P., Jaworski, M., Rutkowski, L.: Knowledge discovery in data streams with the orthogonal series-based generalized regression neural networks. Inf. Sci. 460–461, 497–518 (2018)

    Article  MathSciNet  Google Scholar 

  18. Gaber, M.M., Krishnaswamy, S., Zaslavsky, A.B.: Resource-aware mining of data streams. J. Univ. Comput. Sci. 11, 1440–1453 (2005)

    MATH  Google Scholar 

  19. Gomes, J., Gaber, M., Sousa, P., Menasalvas, E.: Mining recurring concepts in a dynamic feature space. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 95–110 (2014)

    Article  Google Scholar 

  20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  21. Hinton, G.E.: To recognize shapes, first learn to generate images. Prog. Brain Res. 165, 535–547 (2007)

    Article  Google Scholar 

  22. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  Google Scholar 

  23. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_32

    Chapter  Google Scholar 

  24. Hinton, G.E., Sejnowski, T.J., Ackley, D.H.: Boltzmann machines: constraint satisfaction networks that learn. Technical report, CMU-CS-84-119, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA (1984)

    Google Scholar 

  25. Isokawa, T., Yamamoto, H., Nishimura, H., Yumoto, T., Kamiura, N., Matsui, N.: Complex-valued associative memories with projection and iterative learning rules. J. Artif. Intell. Soft Comput. Res. 8(3), 237–249 (2018)

    Article  Google Scholar 

  26. Jaworski, M., Duda, P., Rutkowski, L.: On applying the restricted Boltzmann machine to active concept drift detection. In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence, Honolulu, USA, pp. 3512–3519 (2017)

    Google Scholar 

  27. Jaworski, M., Duda, P., Rutkowski, L.: Concept drift detection in streams of labelled data using the restricted Boltzmann machine. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2018)

    Google Scholar 

  28. Jaworski, M.: Regression function and noise variance tracking methods for data streams with concept drift. Int. J. Appl. Math. Comput. Sci. 28(3), 559–567 (2018)

    Article  MathSciNet  Google Scholar 

  29. Jaworski, M., Duda, P., Rutkowski, L.: New splitting criteria for decision trees in stationary data streams. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2516–2529 (2018)

    Article  MathSciNet  Google Scholar 

  30. Jaworski, M., Pietruczuk, L., Duda, P.: On resources optimization in fuzzy clustering of data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7268, pp. 92–99. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29350-4_11

    Chapter  Google Scholar 

  31. Jordanov, I., Petrov, N., Petrozziello, A.: Classifiers accuracy improvement based on missing data imputation. J. Artif. Intell. Soft Comput. Res. 8(1), 31–48 (2018)

    Article  Google Scholar 

  32. Krawczyk, B., Cano, A.: Online ensemble learning with abstaining classifiers for drifting and noisy data streams. Appl. Soft Comput. 68, 677–692 (2018)

    Article  Google Scholar 

  33. Kumar, T., Rohil, H.: Quality assured resource aware data stream mining. Int. J. Appl. Eng. Res. 6, 2563–2567 (2011)

    Google Scholar 

  34. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  35. LeCun, Y., Huang, F.: Loss functions for discriminative training of energy-based models. In: AISTATS 2005 - Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, pp. 206–213 (2005)

    Google Scholar 

  36. Lemaire, V., Salperwyck, C., Bondu, A.: A survey on supervised classification on data streams. In: Zimányi, E., Kutsche, R.-D. (eds.) eBISS 2014. LNBIP, vol. 205, pp. 88–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17551-5_4

    Chapter  Google Scholar 

  37. Nowicki, R.K., Starczewski, J.T.: A new method for classification of imprecise data using fuzzy rough fuzzification. Inf. Sci. 414, 33–52 (2017)

    Article  Google Scholar 

  38. Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream data mining? Inf. Sci. 381(C), 46–54 (2017)

    Article  MathSciNet  Google Scholar 

  39. Ramirez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., Herrera, F.: A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239, 39–57 (2017)

    Article  Google Scholar 

  40. Roux, N.L., Bengio, Y.: Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 20(6), 1631–1649 (2008)

    Article  MathSciNet  Google Scholar 

  41. Rutkowski, L., Jaworski, M., Duda, P.: Stream Data Mining: Algorithms and Their Probabilistic Properties. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13962-9

    Book  Google Scholar 

  42. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)

    Article  Google Scholar 

  43. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)

    Article  Google Scholar 

  44. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1048–1059 (2015)

    Article  MathSciNet  Google Scholar 

  45. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  46. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 194–281. MIT Press, Cambridge (1986)

    Google Scholar 

  47. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stonebraker, M.: Load shedding in a data stream manager. In: Proceedings of the 29th International Conference on Very Large Data Bases, VLDB 2003, vol. 29, pp. 309–320. VLDB Endowment (2003)

    Google Scholar 

  48. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 1064–1071. ACM, New York (2008)

    Google Scholar 

  49. Welling, M., Rosen-Zvi, M., Hinton, G.: Exponential family harmoniums with an application to information retrieval. In: Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS 2004, pp. 1481–1488. MIT Press, Cambridge (2004)

    Google Scholar 

  50. Zhao, Y., Liu, Q.: A continuous-time distributed algorithm for solving a class of decomposable nonconvex quadratic programming. J. Artif. Intell. Soft Comput. Res. 8(4), 283–291 (2018)

    Article  Google Scholar 

  51. Zliobaite, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 27–39 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Science Centre under grant no. 2017/27/B/ST6/02852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Jaworski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaworski, M., Rutkowski, L., Duda, P., Cader, A. (2019). Resource-Aware Data Stream Mining Using the Restricted Boltzmann Machine. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham. https://doi.org/10.1007/978-3-030-20915-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20915-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20914-8

  • Online ISBN: 978-3-030-20915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics