Detecting Anomalous Trajectories via Recurrent Neural Networks | SpringerLink
Skip to main content

Detecting Anomalous Trajectories via Recurrent Neural Networks

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

Abstract

Detecting anomalies from trajectory data is an important task in video surveillance. However, it is difficult to give a precise definition of this term since trajectory data obtained from different camera views may vary in shape, direction, and spatial distribution. In this paper, we propose trajectory distance metrics based on a recurrent neural network to measure similarities and detect anomalies from trajectory data. First, we use an autoencoder to capture the dynamic features of a trajectory. The distance between two trajectories is defined by the reconstruction errors based on the learned models. We then detect anomalies based on the nearest neighbors using the proposed metric. As such, we can deal with various kinds of anomalies in different scenes and detect anomalous trajectories in either a supervised or unsupervised manner. Experiments show that the proposed algorithm performs favorably against the state-of-the-art anomaly detections on the benchmark datasets.

This work is supported in part by NSFC (No. 61672089, 61273274, and 61572064), National Key Technology R&D Program of China 2012BAH01F03, the Fundamental Research Funds for the Central Universities 2017YJS043, the NSF CAREER Grant (No. 1149783), and gifts from Adobe and Nvidia. Cong Ma and Shaoyue Song are supported by a scholarship from China Scholarship Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

    Article  Google Scholar 

  2. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: Workshop on Knowledge Discovery in Databases (1994)

    Google Scholar 

  3. Besse, P., Guillouet, B., Loubes, J.M., François, R.: Review and perspective for distance based trajectory clustering. arXiv preprint arXiv:1508.04904 (2015)

  4. Chen, L., Ng, R.: On the marriage of LP-norms and edit distance. In: International Conference on Very Large Data Bases (2004)

    Google Scholar 

  5. Chen, L., Ozsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: ACM SIGMOD International Conference on Management of Data (2005)

    Google Scholar 

  6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  7. Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotemporal autoencoder. arXiv preprint arXiv:1701.01546 (2017)

  8. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  9. Ergezer, H., Leblebicioğlu, K.: Anomaly detection and activity perception using covariance descriptor for trajectories. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 728–742. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_51

    Chapter  Google Scholar 

  10. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  11. Hausdorff, F.: Grundz uge der mengenlehre (1914)

    Google Scholar 

  12. Hu, W., Li, X., Tian, G., Maybank, S., Zhang, Z.: An incremental DPMM-based method for trajectory clustering, modeling, and retrieval. IEEE Trans. Pattern Mach. Intell. 35(5), 1051–1065 (2013)

    Article  Google Scholar 

  13. Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion patterns. IEEE Trans. Pattern Mach. Intell. 28(9), 1450–1464 (2006)

    Article  Google Scholar 

  14. Jiang, F., Wu, Y., Katsaggelos, A.K.: A dynamic hierarchical clustering method for trajectory-based unusual video event detection. IEEE Trans. Image Process. 18(4), 907–913 (2009)

    Article  MathSciNet  Google Scholar 

  15. Kumar, D., Bezdek, J.C., Rajasegarar, S., Leckie, C., Palaniswami, M.: A visual-numeric approach to clustering and anomaly detection for trajectory data. Vis. Comput. 33(3), 265–281 (2017)

    Article  Google Scholar 

  16. Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection in trajectories. IEEE Trans. Pattern Mach. Intell. 36(6), 1158–1173 (2014)

    Article  Google Scholar 

  17. Li, C., Han, Z., Ye, Q., Jiao, J.: Visual abnormal behavior detection based on trajectory sparse reconstruction analysis. Neurocomputing 119, 94–100 (2013)

    Article  Google Scholar 

  18. Lin, W., et al.: A tube-and-droplet-based approach for representing and analyzing motion trajectories. IEEE Trans. Pattern Mach. Intell. 39(8), 1489–1503 (2017)

    Article  Google Scholar 

  19. Morris, B.T., Trivedi, M.M.: Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach. IEEE Trans. Pattern Mach. Intell. 33(11), 2287–2301 (2011)

    Article  Google Scholar 

  20. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1544–1554 (2008)

    Article  Google Scholar 

  21. Porikli, F.: Trajectory distance metric using hidden Markov model based representation. In: ECCV 2004, PETS Workshop (2004)

    Google Scholar 

  22. Sillito, R.R., Fisher, R.B.: Semi-supervised learning for anomalous trajectory detection. In: British Machine Vision Conference (2008)

    Google Scholar 

  23. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning (2015)

    Google Scholar 

  24. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Neural Information Processing Systems (2014)

    Google Scholar 

  25. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: IEEE International Conference on Data Engineering (2002)

    Google Scholar 

  26. Wen, L., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. arXiv preprint arXiv:1511.04136 (2015)

  27. Yang, H., Wang, B., Lin, S., Wipf, D., Guo, M., Guo, B.: Unsupervised extraction of video highlights via robust recurrent auto-encoders. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  28. Yankov, D., Keogh, E., Rebbapragada, U.: Disk aware discord discovery: finding unusual time series in terabyte sized datasets. In: IEEE International Conference on Data Mining, pp. 381–390 (2007)

    Google Scholar 

  29. Yao, D., Zhang, C., Zhu, Z., Huang, J., Bi, J.: Trajectory clustering via deep representation learning. In: International Joint Conference on Neural Networks (2017)

    Google Scholar 

  30. Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: International Conference on Pattern Recognition (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, C., Miao, Z., Li, M., Song, S., Yang, MH. (2019). Detecting Anomalous Trajectories via Recurrent Neural Networks. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics