Counting Strategies for the Probabilistic Description Logic $$\mathcal {ALC}^\mathsf {ME}$$ Under the Principle of Maximum Entropy | SpringerLink
Skip to main content

Counting Strategies for the Probabilistic Description Logic \(\mathcal {ALC}^\mathsf {ME}\) Under the Principle of Maximum Entropy

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2019)

Abstract

We present \(\mathcal {ALC}^\mathsf {ME}\), a probabilistic variant of the Description Logic \(\mathcal {ALC}\) that allows for representing and processing conditional statements of the form “if E holds, then F follows with probability p” under the principle of maximum entropy. Probabilities are understood as degrees of belief and formally interpreted by the aggregating semantics. We prove that both checking consistency and drawing inferences based on approximations of the maximum entropy distribution is possible in \(\mathcal {ALC}^\mathsf {ME}\) in time polynomial in the domain size. A major problem for probabilistic reasoning from such conditional knowledge bases is to count models and individuals. To achieve our complexity results, we develop sophisticated counting strategies on interpretations aggregated with respect to the so-called conditional impacts of types, which refine their conditional structure.

This work was supported by the German Research Foundation (DFG) within the Research Unit FOR 1513 “Hybrid Reasoning for Intelligent Systems”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  2. Baader, F., Ecke, A.: Extending the description logic ALC with more expressive cardinality constraints on concepts. In: Proceedings of the 3rd Global Conference on Artificial Intelligence (GCAI), pp. 6–19. EasyChair (2017)

    Google Scholar 

  3. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier, Amsterdam (2007)

    Google Scholar 

  4. Baader, F., Koopmann, P., Turhan, A.-Y.: Using ontologies to query probabilistic numerical data. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 77–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_5

    Chapter  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted probabilistic inference by first-order knowledge compilation. In: Proceedings of the 22th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2178–2185. AAAI Press (2011)

    Google Scholar 

  7. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990)

    Article  MathSciNet  Google Scholar 

  8. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44600-1

    Book  MATH  Google Scholar 

  9. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic conditionals. In: Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 382–392. AAAI Press (2010)

    Google Scholar 

  10. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 393–403. AAAI Press (2010)

    Google Scholar 

  11. Paris, J.B.: Common sense and maximum entropy. Synthese 117(1), 75–93 (1999)

    Article  MathSciNet  Google Scholar 

  12. Paris, J.B.: The Uncertain Reasoner’s Companion: A Mathematical Perspective. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  13. Peñaloza, R., Potyka, N.: Towards statistical reasoning in description logics over finite domains. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds.) SUM 2017. LNCS (LNAI), vol. 10564, pp. 280–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67582-4_20

    Chapter  Google Scholar 

  14. Pratt, V.R.: Models of program logics. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (FOCS), pp. 115–122. IEEE Computer Society (1979)

    Google Scholar 

  15. Rudolph, S., Krötzsch, M., Hitzler, P.: Type-elimination-based reasoning for the description logic SHIQbs using decision diagrams and disjunctive datalog. Logical Methods Comput. Sci. 8(1), 38 (2012)

    Article  Google Scholar 

  16. Thimm, M., Kern-Isberner, G.: On probabilistic inference in relational conditional logics. Logic J. IGPL 20(5), 872–908 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilhelm, M., Kern-Isberner, G., Ecke, A., Baader, F. (2019). Counting Strategies for the Probabilistic Description Logic \(\mathcal {ALC}^\mathsf {ME}\) Under the Principle of Maximum Entropy. In: Calimeri, F., Leone, N., Manna, M. (eds) Logics in Artificial Intelligence. JELIA 2019. Lecture Notes in Computer Science(), vol 11468. Springer, Cham. https://doi.org/10.1007/978-3-030-19570-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19570-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19569-4

  • Online ISBN: 978-3-030-19570-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics