Cross Modality Microscopy Segmentation via Adversarial Adaptation | SpringerLink
Skip to main content

Cross Modality Microscopy Segmentation via Adversarial Adaptation

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11466))

Abstract

Deep learning techniques have been successfully applied to automatically segment and quantify cell-types in images acquired from both confocal and light sheet fluorescence microscopy. However, the training of deep learning networks requires a massive amount of manually-labeled training data, which is a very time-consuming operation. In this paper, we demonstrate an adversarial adaptation method to transfer deep network knowledge for microscopy segmentation from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which no or very limited labeled training data is available. Promising segmentation results show that the proposed transfer learning approach is an effective way to rapidly develop segmentation solutions for new imaging methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akeret, J., Chang, C., Lucchi, A., Refregier, A.: Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput. 18, 35–39 (2017)

    Article  Google Scholar 

  2. Arbelle, A., Raviv, T.R.: Microscopy cell segmentation via adversarial neural networks. In: ISBI 2018, pp. 645–648. IEEE (2018)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  6. Guo, Y., Wrammert, J., Singh, K., Ashish, K., Bradford, K., Krishnamurthy, A.: Automatic analysis of neonatal video data to evaluate resuscitation performance. In: ICCABS, pp. 1–6. IEEE (2016)

    Google Scholar 

  7. Hoffman, J., et al.: LSDA: large scale detection through adaptation. In: Advances in Neural Information Processing Systems, pp. 3536–3544 (2014)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, vol. 37, pp. 448–456. PMLR (2015). http://proceedings.mlr.press/v37/ioffe15.html

  9. Liu, M., et al.: Adaptive cell segmentation and tracking for volumetric confocal microscopy images of a developing plant meristem. Mol. Plant 4(5), 922–931 (2011)

    Article  Google Scholar 

  10. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS, pp. 469–477 (2016)

    Google Scholar 

  11. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  12. Packard, R.R.S., et al.: Automated segmentation of light-sheet fluorescent imaging to characterize experimental doxorubicin-induced cardiac injury and repair. Sci. Rep. 7(1), 8603 (2017)

    Article  Google Scholar 

  13. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Sadanandan, S.K., Karlsson, J., Wählby, C.: Spheroid segmentation using multiscale deep adversarial networks. In: ICCVW, pp. 36–41. IEEE (2017)

    Google Scholar 

  16. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19(1), 221–248 (2017). pMID: 28301734

    Article  Google Scholar 

  17. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, vol. 1, p. 4 (2017)

    Google Scholar 

  18. Yang, H.F., Choe, Y.: Cell tracking and segmentation in electron microscopy images using graph cuts. In: ISBI, pp. 306–309. IEEE (2009)

    Google Scholar 

  19. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under grants OCI-1153775 and OAC-1649916.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Y. et al. (2019). Cross Modality Microscopy Segmentation via Adversarial Adaptation. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics