Abstract
Deep learning techniques have been successfully applied to automatically segment and quantify cell-types in images acquired from both confocal and light sheet fluorescence microscopy. However, the training of deep learning networks requires a massive amount of manually-labeled training data, which is a very time-consuming operation. In this paper, we demonstrate an adversarial adaptation method to transfer deep network knowledge for microscopy segmentation from one imaging modality (e.g., confocal) to a new imaging modality (e.g., light sheet) for which no or very limited labeled training data is available. Promising segmentation results show that the proposed transfer learning approach is an effective way to rapidly develop segmentation solutions for new imaging methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akeret, J., Chang, C., Lucchi, A., Refregier, A.: Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput. 18, 35–39 (2017)
Arbelle, A., Raviv, T.R.: Microscopy cell segmentation via adversarial neural networks. In: ISBI 2018, pp. 645–648. IEEE (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
Guo, Y., Wrammert, J., Singh, K., Ashish, K., Bradford, K., Krishnamurthy, A.: Automatic analysis of neonatal video data to evaluate resuscitation performance. In: ICCABS, pp. 1–6. IEEE (2016)
Hoffman, J., et al.: LSDA: large scale detection through adaptation. In: Advances in Neural Information Processing Systems, pp. 3536–3544 (2014)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, vol. 37, pp. 448–456. PMLR (2015). http://proceedings.mlr.press/v37/ioffe15.html
Liu, M., et al.: Adaptive cell segmentation and tracking for volumetric confocal microscopy images of a developing plant meristem. Mol. Plant 4(5), 922–931 (2011)
Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS, pp. 469–477 (2016)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Packard, R.R.S., et al.: Automated segmentation of light-sheet fluorescent imaging to characterize experimental doxorubicin-induced cardiac injury and repair. Sci. Rep. 7(1), 8603 (2017)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sadanandan, S.K., Karlsson, J., Wählby, C.: Spheroid segmentation using multiscale deep adversarial networks. In: ICCVW, pp. 36–41. IEEE (2017)
Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19(1), 221–248 (2017). pMID: 28301734
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, vol. 1, p. 4 (2017)
Yang, H.F., Choe, Y.: Cell tracking and segmentation in electron microscopy images using graph cuts. In: ISBI, pp. 306–309. IEEE (2009)
Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47
Acknowledgements
This work was supported in part by the National Science Foundation under grants OCI-1153775 and OAC-1649916.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, Y. et al. (2019). Cross Modality Microscopy Segmentation via Adversarial Adaptation. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-17935-9_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17934-2
Online ISBN: 978-3-030-17935-9
eBook Packages: Computer ScienceComputer Science (R0)