Secret-Sharing Schemes for General and Uniform Access Structures | SpringerLink
Skip to main content

Secret-Sharing Schemes for General and Uniform Access Structures

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2019 (EUROCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11478))

Abstract

A secret-sharing scheme allows some authorized sets of parties to reconstruct a secret; the collection of authorized sets is called the access structure. For over 30 years, it was known that any (monotone) collection of authorized sets can be realized by a secret-sharing scheme whose shares are of size \(2^{n-o(n)}\) and until recently no better scheme was known. In a recent breakthrough, Liu and Vaikuntanathan (STOC 2018) have reduced the share size to \(O(2^{0.994n})\). Our first contribution is improving the exponent of secret sharing down to 0.892. For the special case of linear secret-sharing schemes, we get an exponent of 0.942 (compared to 0.999 of Liu and Vaikuntanathan).

Motivated by the construction of Liu and Vaikuntanathan, we study secret-sharing schemes for uniform access structures. An access structure is k-uniform if all sets of size larger than k are authorized, all sets of size smaller than k are unauthorized, and each set of size k can be either authorized or unauthorized. The construction of Liu and Vaikuntanathan starts from protocols for conditional disclosure of secrets, constructs secret-sharing schemes for uniform access structures from them, and combines these schemes in order to obtain secret-sharing schemes for general access structures. Our second contribution in this paper is constructions of secret-sharing schemes for uniform access structures. We achieve the following results:

  • A secret-sharing scheme for k-uniform access structures for large secrets in which the share size is \(O(k^2)\) times the size of the secret.

  • A linear secret-sharing scheme for k-uniform access structures for a binary secret in which the share size is \(\tilde{O}(2^{h(k/n)n/2})\) (where h is the binary entropy function). By counting arguments, this construction is optimal (up to polynomial factors).

  • A secret-sharing scheme for k-uniform access structures for a binary secret in which the share size is \(2^{\tilde{O}(\sqrt{k \log n})}\).

Our third contribution is a construction of ad-hoc PSM protocols, i.e., PSM protocols in which only a subset of the parties will compute a function on their inputs. This result is based on ideas we used in the construction of secret-sharing schemes for k-uniform access structures for a binary secret.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Formally, such a statement implicitly refers to an infinite sequence of (collections of) access structures that is parameterized by the number of participants n.

  2. 2.

    The notation \(\mathbf {M}\) stands for “middle”.

  3. 3.

    The notation \(\mathbf {X}\) stands for eXternal slices.

References

  1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_8

    Chapter  Google Scholar 

  2. Applebaum, B., Arkis, B.: On the power of amortization in secret sharing: d-uniform secret sharing and CDS with constant information rate. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 317–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_12

    Chapter  MATH  Google Scholar 

  3. Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure of secrets: amplification, closure, amortization, lower-bounds, and separations. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 727–757. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_24

    Chapter  Google Scholar 

  4. Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes for general and uniform access structures. Technical report 2019/231, IACR Cryptology ePrint Archive (2019)

    Google Scholar 

  5. Applebaum, B., Holenstein, T., Mishra, M., Shayevitz, O.: The communication complexity of private simultaneous messages, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 261–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_9

    Chapter  Google Scholar 

  6. Applebaum, B., Vasudevan, P.: Placing conditional disclosure of secrets in the communication complexity universe. In: 10th Innovations in Theoretical Computer Science Conference, ITCS. LIPIcs, vol. 124, pp. 4:1–4:14 (2019)

    Google Scholar 

  7. Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_31

    Chapter  Google Scholar 

  8. Beimel, A., Chor, B.: Universally ideal secret-sharing schemes. IEEE Trans. Inf. Theory 40(3), 786–794 (1994)

    Article  MathSciNet  Google Scholar 

  9. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for forbidden graph access structures. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 394–423. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_13

    Chapter  Google Scholar 

  10. Beimel, A., Farràs, O., Peter, N.: Secret sharing schemes for dense forbidden graphs. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 509–528. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_27

    Chapter  MATH  Google Scholar 

  11. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic complexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_14

    Chapter  MATH  Google Scholar 

  12. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM protocols and related models. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 287–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_10

    Chapter  Google Scholar 

  13. Beimel, A., Peter, N.: Optimal linear multiparty conditional disclosure of secrets protocols. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 332–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_13

    Chapter  Google Scholar 

  14. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_20

    Chapter  Google Scholar 

  15. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 1–10 (1988)

    Google Scholar 

  16. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3

    Chapter  Google Scholar 

  17. Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block codes. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 67–79. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1_53

    Chapter  Google Scholar 

  18. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS National Computer Conference, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  19. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the 20th ACM Symposium on the Theory of Computing, pp. 11–19 (1988)

    Google Scholar 

  20. Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. J. Cryptol. 6(2), 87–96 (1993)

    Article  MathSciNet  Google Scholar 

  21. Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_22

    Chapter  Google Scholar 

  22. Csirmaz, L.: The size of a share must be large. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 13–22. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053420. Journal Version in: J. Cryptol. 10(4), 223–231 (1997)

    Chapter  Google Scholar 

  23. Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math. Hungar. 32(3–4), 429–437 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_37

    Chapter  Google Scholar 

  25. Erdös, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press, Cambridge (1974)

    MATH  Google Scholar 

  26. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th STOC 1994, pp. 554–563 (1994)

    Google Scholar 

  27. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclosure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_24

    Chapter  Google Scholar 

  28. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

    Article  MathSciNet  Google Scholar 

  29. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98 (2006)

    Google Scholar 

  30. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: 5th Israel Symposium on Theory of Computing and Systems, pp. 174–183 (1997)

    Google Scholar 

  31. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_54

    Chapter  MATH  Google Scholar 

  32. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Globecom 1987, pp. 99–102 (1987). Journal Version: Multiple assignment scheme for sharing secret. J. Cryptol. 6(1), 15–20 (1993)

    Google Scholar 

  33. Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Complexity Theory, pp. 102–111 (1993)

    Google Scholar 

  34. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In: 50th STOC 2018, pp. 699–708 (2018)

    Google Scholar 

  35. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_25

    Chapter  Google Scholar 

  36. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 567–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_21

    Chapter  Google Scholar 

  37. Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. In: 3rd ACM Conference on Computer and Communications Security, pp. 157–167 (1996)

    Google Scholar 

  38. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  39. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77444-0_31

    Chapter  Google Scholar 

  40. Stinson, D.R.: Decomposition construction for secret sharing schemes. IEEE Trans. Inf. Theory 40(1), 118–125 (1994)

    Article  MathSciNet  Google Scholar 

  41. Sun, H., Shieh, S.: Secret sharing in graph-based prohibited structures. In: INFOCOM 1997, pp. 718–724 (1997)

    Google Scholar 

  42. Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Crypt. 58(1), 11–21 (2011)

    Article  MathSciNet  Google Scholar 

  43. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  44. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_26

    Chapter  Google Scholar 

Download references

Acknowledgement

The first and fourth authors are supported by the European Union’s Horizon 2020 Programme (ERC-StG-2014-2020) under grant agreement no. 639813 ERC-CLC, and the Check Point Institute for Information Security. Part of this work was done while the second author was visiting Georgetown university, supported by NSF grant no. 1565387, TWC: Large: Collaborative: Computing Over Distributed Sensitive Data. The second author is also supported by ISF grant 152/17 and by a grant from the Cyber Security Research Center at Ben-Gurion University of the Negev. The third author is supported by the Spanish Government through TIN2014-57364-C2-1-R and by the Government of Catalonia through Grant 2017 SGR 705. The fifth author is supported by ISF grant 152/17, by a grant from the Cyber Security Research Center at Ben-Gurion University of the Negev, and by the Frankel center for computer science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Applebaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N. (2019). Secret-Sharing Schemes for General and Uniform Access Structures. In: Ishai, Y., Rijmen, V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science(), vol 11478. Springer, Cham. https://doi.org/10.1007/978-3-030-17659-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17659-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17658-7

  • Online ISBN: 978-3-030-17659-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics