Subject Identification Based on Gait Using a RGB-D Camera | SpringerLink
Skip to main content

Abstract

Biometric authentication (i.e., verification of a given subject’s identity using biological characteristics) relying on gait characteristics obtained in a non-intrusive way can be very useful in the area of security, for smart surveillance and access control. In this contribution, we investigated the possibility of carrying out subject identification based on a predictive model built using machine learning techniques, and features extracted from 3-D body joint data provided by a single low-cost RGB-D camera (Microsoft Kinect v2). We obtained a dataset including 400 gait cycles from 20 healthy subjects, and 25 anthropometric measures and gait parameters per gait cycle. Different machine learning algorithms were explored: k-nearest neighbors, decision tree, random forest, support vector machines, multilayer perceptron, and multilayer perceptron ensemble. The algorithm that led to the model with best trade-off between the considered evaluation metrics was the random forest: overall accuracy of 99%, class accuracy of 100 ± 0%, and F1 score of 99 ± 2%. These results show the potential of using a RGB-D camera for subject identification based on quantitative gait analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.N.: Gait recognition: a challenging signal processing technology for biometric identification. IEEE Sig. Process Mag. 22(6), 78–90 (2005). https://doi.org/10.1109/MSP.2005.1550191

    Article  Google Scholar 

  2. Wang, J., She, M., Nahavandi, S., Kouzani, A.: A review of vision-based gait recognition methods for human identification. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, NSW, Australia, 1–3 December 2010, pp. 320–327. IEEE (2010)

    Google Scholar 

  3. Nixon, M.S., Tan, T., Chellappa, R.: Human Identification Based on Gait, vol. 4. Springer, Heidelberg (2010)

    Google Scholar 

  4. Collins, R.T., Gross, R., Jianbo, S.: Silhouette-based human identification from body shape and gait. In: IEEE International Conference on Automatic Face and Gesture Recognition, 21 May 2002, pp. 366–371. IEEE (2002)

    Google Scholar 

  5. Cheng, M.-H., Ho, M.-F., Huang, C.-L.: Gait analysis for human identification through manifold learning and HMM. Pattern Recogn. 41(8), 2541–2553 (2008). https://doi.org/10.1016/j.patcog.2007.11.021

    Article  MATH  Google Scholar 

  6. Lam, T.H.W., Cheung, K.H., Liu, J.N.K.: Gait flow image: a silhouette-based gait representation for human identification. Pattern Recogn. 44(4), 973–987 (2011). https://doi.org/10.1016/j.patcog.2010.10.011

    Article  MATH  Google Scholar 

  7. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003). https://doi.org/10.1109/TPAMI.2003.1251144

    Article  Google Scholar 

  8. Nambiar, A., Bernardino, A., Nascimento, J.C., Fred, A.: Towards view-point invariant person re-identification via fusion of anthropometric and gait features from Kinect measurements. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), Porto, Portugal, 27 February–1 March 2017, pp. 108–119. SciTePress (2017)

    Google Scholar 

  9. Ahmed, F., Paul, P.P., Gavrilova, M.L.: DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect. Vis. Comput. 31(6), 915–924 (2015). https://doi.org/10.1007/s00371-015-1092-0

    Article  Google Scholar 

  10. Rahman, M.W., Gavrilova, M.L.: Kinect gait skeletal joint feature-based person identification. In: IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC), 26–28 July 2017, pp. 423–430 (2017)

    Google Scholar 

  11. Andersson, V.O., Araujo, R.M.: Full body person identification using the Kinect sensor. In: IEEE International Conference on Tools with Artificial Intelligence, 10–12 November 2014, pp. 627–633 (2014)

    Google Scholar 

  12. Jiang, S., Wang, Y., Zhang, Y., Sun, J.: Real time gait recognition system based on Kinect skeleton feature. In: Asian Computer Vision - ACCV 2014 Workshops Conference on Computer Vision, Singapore, 1–5 November 2014, pp. 46–57. Springer (2014)

    Google Scholar 

  13. Sinha, A., Chakravarty, K., Bhowmick, B.: Person identification using skeleton information from Kinect. In: International Conference on Advances in Computer-Human Interactions, Nice, France, 24 February–1 March 2013, pp. 101–108 (2013)

    Google Scholar 

  14. Preis, J., Kessel, M., Werner, M., Linnhoff-Popien, C.: Gait recognition with Kinect. In: International Workshop on Kinect in Pervasive Computing, New Castle, UK, 18–22 June 2012, pp. P1–P4 (2012)

    Google Scholar 

  15. Ball, A., Rye, D., Ramos, F., Velonaki, M.: Unsupervised clustering of people from ‘skeleton’ data. In: Annual ACM/IEEE International Conference on Human-Robot Interaction, Boston, Massachusetts, USA, 5–8 March 2012, pp. 225–226. ACM (2012)

    Google Scholar 

  16. Cunha, J.P.S., Rocha, A.P., Choupina, H.M.P., Fernandes, J.M., Rosas, M.J., Vaz, R., Achilles, F., Loesch, A.M., Vollmar, C., Hartl, E., Noachtar, S.: A novel portable, low-cost Kinect-based system for motion analysis in neurological diseases. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, Florida, USA, 16–20 August 2016, pp. 2339–2342. IEEE (2016)

    Google Scholar 

  17. Rocha, A.P., Choupina, H.M.P., Vilas-Boas, M.d.C, Fernandes, J.M., Cunha, J.P.S.: System for automatic gait analysis based on a single RGB-D camera. PLoS ONE 13(8), e0201728 (2018). https://doi.org/10.1371/journal.pone.0201728

    Article  Google Scholar 

  18. Hechenbichler, K., Schliep, K.: Weighted k-nearest-neighbor techniques and ordinal classification (2004)

    Google Scholar 

  19. Hechenbichler, K., Schliep, K.: kknn: Weighted k-nearest neighbors (R package version 1.3.1) (2016)

    Google Scholar 

  20. Samworth, R.J.: Optimal weighted nearest neighbour classifiers. Ann. Stat. 40(5), 2733–2763 (2012). https://doi.org/10.1214/12-aos1049

    Article  MathSciNet  MATH  Google Scholar 

  21. Therneau, T.M., Atkinson, E.J.: An introduction to recursive partitioning using the RPART routines, Mayo Foundation (2015)

    Google Scholar 

  22. Therneau, T., Atkinson, B.: rpart: Recursive partitioning and regression trees (R package version 4.1-13) (2018)

    Google Scholar 

  23. Breiman, L., Friedman, J., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, (1984)

    Google Scholar 

  24. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  25. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  26. Karatzoglou, A., Meyer, D., Hornik, K.: Support vector machines in R. J. Stat. Softw. 15(9), 1–28 (2006). https://doi.org/10.18637/jss.v015.i09

    Article  Google Scholar 

  27. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004). https://doi.org/10.18637/jss.v011.i09

    Article  Google Scholar 

  28. Venables, W.N., Ripley, B.D.: Modern applied statistics with S. Statistics and Computing, 4th edn. Springer, New York (2002)

    Book  Google Scholar 

  29. Cortez, P.: Data mining with neural networks and support vector machines using the R/rminer tool. In: Perner, P. (ed.) Advances in Data Mining: Applications and Theoretical Aspects, pp. 572–583. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2012)

    MATH  Google Scholar 

  31. R Core Team R: A language and environment for statistical computing (2015)

    Google Scholar 

  32. Kuhn, M.: caret: Classification and regression training (R package version 6.0-80) (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by EU funds through Programa Operacional Factores de Competitividade (COMPETE), and by national funds through Fundação para a Ciência e a Tecnologia (FCT), in the context of scholarship SFRH/DB/110438/2015, and projects UID/CEC/00127/2013, Incentivo/EEI/UI0127/2014, FCOMP-01-0124-FEDER-028943, and FCOMP-01-0124-FEDER-029673. It was also partially funded by national funds through North Portugal Regional Operational Programme (NORTE 2020) in the context of projects NORTE-01-0145-FEDER-000016 and NORTE-01-0145-FEDER-000020. The authors wish to thank the subjects that participated in the study, and the LABIOMEP staff who assisted in the data acquisitions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Patrícia Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rocha, A.P., Fernandes, J.M., Choupina, H.M.P., Vilas-Boas, M.d.C., Cunha, J.P.S. (2020). Subject Identification Based on Gait Using a RGB-D Camera. In: Madureira, A., Abraham, A., Gandhi, N., Silva, C., Antunes, M. (eds) Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018). SoCPaR 2018. Advances in Intelligent Systems and Computing, vol 942. Springer, Cham. https://doi.org/10.1007/978-3-030-17065-3_8

Download citation

Publish with us

Policies and ethics