Abstract
The profiled side-channel analysis represents the most powerful category of side-channel attacks. In this context, the security evaluator (i.e., attacker) gains access to a profiling device to build a precise model which is used to attack another device in the attacking phase. Mostly, it is assumed that the attacker has significant capabilities in the profiling phase, whereas the attacking phase is very restricted. We step away from this assumption and consider an attacker restricted in the profiling phase, while the attacking phase is less limited. We propose the concept of semi-supervised learning for side-channel analysis, where the attacker uses a small number of labeled measurements from the profiling phase as well as the unlabeled measurements from the attacking phase to build a more reliable model. Our results show that the semi-supervised concept significantly helps the template attack (TA) and its pooled version (TA\(_p\)). More specifically, for low noise scenario, the results for machine learning techniques and TA are often improved when only a small number of measurements is available in the profiling phase, while there is no significant difference in scenarios where the supervised set is large enough for reliable classification. For high noise scenario, TA\(_p\) and multilayer perceptron results are improved for the majority of inspected dataset sizes, while for high noise scenario with added countermeasures, we show a small improvement for TA\(_p\), Naive Bayes and multilayer perceptron approaches for most inspected dataset sizes. Current results go in favor of using semi-supervised learning, especially self-training approach, in side-channel attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Heuser, A., Rioul, O., Guilley, S.: Good is not good enough — deriving optimal distinguishers from communication theory. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_4
Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2
Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic devices using support vector machines. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_18
Picek, S., Heuser, A., Guilley, S.: Template attack versus bayes classifier. J. Cryptographic Eng. 7(4), 343–351 (2017). https://doi.org/10.1007/s13389-017-0172-7
Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without preprocessing. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3
Heyszl, J., Ibing, A., Mangard, S., De Santis, F., Sigl, G.: Clustering algorithms for non-profiled single-execution attacks on exponentiations. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 79–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_6
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10
Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237
Lerman, L., Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G., Markowitch, O.: Semi-supervised template attack. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 184–199. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40026-1_12
Schwenker, F., Trentin, E.: Pattern classification and clustering: a review of partially supervised learning approaches. Pattern Recogn. Lett. 37, 4–14 (2014). https://doi.org/10.1016/j.patrec.2013.10.017
Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. The MIT Press, Cambridge (2010)
Bengio, Y., Delalleau, O., Le Roux, N.: Efficient non-parametric function induction in semi-supervised learning. Technical report 1247, Département d’informatique et recherche opérationnelle, Université de Montréal (2004)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17
Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977). https://doi.org/10.1145/355744.355745
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
TELECOM ParisTech SEN research group: DPA Contest, 4th edn. (2013–2014). http://www.DPAcontest.org/v4/
Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_12
Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study of power variability issues and side-channel attacks for nanoscale devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_8
Choudary, O., Kuhn, M.G.: Template attacks on different devices. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 179–198. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_13
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Picek, S., Heuser, A., Jovic, A., Knezevic, K., Richmond, T. (2019). Improving Side-Channel Analysis Through Semi-supervised Learning. In: Bilgin, B., Fischer, JB. (eds) Smart Card Research and Advanced Applications. CARDIS 2018. Lecture Notes in Computer Science(), vol 11389. Springer, Cham. https://doi.org/10.1007/978-3-030-15462-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-15462-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15461-5
Online ISBN: 978-3-030-15462-2
eBook Packages: Computer ScienceComputer Science (R0)