Abstract
For assessing the structural features of organoclay C15A dispersions in PP/PP-g-MA melts under different processing conditions along the screws of Twin Screw Extruder, in this work four different clustering algorithms are considered. The best algorithm and number of clusters is selected using three internal validation measures: connectedness, Dunn’s index and silhouette width. The results show that hierarchical clustering is the algorithm that yield better results and two is the best number of clusters. Two clusters are well identified L/D = 9.5 and 32.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
With Euclidean distance and Ward method.
References
Gu, F., Hall, P., Miles, N.J.: Development of composites based on recycled polypropylene for injection moulding automobile parts using hierarchical clustering analysis and principal component estimate. J. Clean. Prod. 137, 632–643 (2016)
Mohan, N., Senthil, P., Vinodh, S., Jayanth, N.: A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual. Phys. Prototyp. 12(1), 47–59 (2017)
Mochane, M.J., Mokhena, T.C., Mokhothu, T.H., Mtibe, A., Sadiku, E.R., Ray, S.S.: The importance of nanostructured materials for energy storage/conversion. In: Handbook of Nanomaterials for Industrial Applications, pp. 768–792 (2018)
Gonçalves, J., Lima, P., Krause, B., Potschke, P., Lafont, U., Gomes, J.R., Abreu, C.S., Paiva, M.C., Covas, J.A.: Electrically conductive polyetheretherketone nanocomposite filaments: from production to fused deposition modeling. Polymers 10(8), 925 (2018)
Dong, Y., Pramanik, A., Liu, D.I., Umer, R.: Manufacturing, characterisation and properties of advanced nanocomposites. J. Compos. Sci. 2, 46 (2018)
Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z.: Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 35, 73–79 (2014)
Normand, G., Mija, A., Pagnotta, S., Peuvrel-Disdier, E., Vergnes, B.: Preparation of polypropylene nanocomposites by melt-mixing: comparison between three organoclays. J. Appl. Polym. Sci. 134(28), 45053 (2017)
Cho, S., Hong, J.S., Lee, S.J., Ahn, K.H., Covas, J.A., Maia, J.M.: Morphology and rheology of polypropylene/polystyrene/clay nanocomposites in batch and continuous melt mixing processes. Macromol. Mater. Eng. 296(3–4), 341–348 (2011)
Dennis, H., Hunter, D.L., Chang, D., Kim, S., White, J.L., Cho, J.W., Paul, D.R.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23), 9513–9522 (2001)
Domenech, T., Peuvrel-Disdier, E., Vergnes, B.: The importance of specific mechanical energy during twin screw extrusion of organoclay based polypropylene nanocomposites. Compos. Sci. Technol. 75, 7–14 (2013)
Vergnes, B., Berzin, F.: Modeling of reactive systems in twin-screw extrusion: challenges and applications. C. R. Chim. 9(11–12), 1409–1418 (2006)
Lertwimolnun, W., Vergnes, B.: Effect of processing conditions on the formation of polypropylene/organoclay nanocomposites in a twin screw extruder. Polym. Eng. Sci. 46(3), 314–323 (2006)
Jung, H., White, J.L.: Investigation of melting phenomena in modular co-rotating twin screw extrusion. Int. Polym. Proc. 18(2), 127–132 (2003)
Jung, H., White, J.L.: Modeling and simulation of the mechanisms of melting in a modular co-rotating twin screw extruder. Int. Polym. Proc. 23(3), 242–251 (2008)
Malik, M., Kalyon, D.M., Golba Jr., J.C.: Simulation of co-rotating twin screw extrusion process subject to pressure-dependent wall slip at barrel and screw surfaces: 3D FEM Analysis for combinations of forward-and reverse-conveying screw elements. Int. Polym. Proc. 29(1), 51–62 (2014)
Gurrala, P.K., Regalla, S.P.: Multi-objective optimisation of strength and volumetric shrinkage of FDM parts. Virtual Phys. Prototyp. 9(2), 127–138 (2014)
Villmow, T., Potschke, P., Pegel, S., Häussler, L., Kretzschmar, B.: Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer 49(16), 3500–3509 (2008)
De Almeida, M.F., Correia, A., Costa e Silva, E.: Layered clays in PP polymer dispersion: the effect of the processing conditions. J. Appl. Stat. 45(3), 558–567 (2018)
Cassagnau, P.: Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49(9), 2183–2196 (2008)
Domenech, T., Zouari, R., Vergnes, B., Peuvrel-Disdier, E.: Formation of fractal-like structure in organoclay-based polypropylene nanocomposites. Macromolecules 47(10), 3417–3427 (2014)
Brock, G., Pihur, V., Datta, S., Datta, S.: clValid, an R package for cluster validation. J. Stat. Softw. (2011)
Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)
Ledolter, J.: Data Mining and Business Analytics with R. Wiley, Hoboken (2013)
Zhao, Y.: R and Data Mining: Examples and Case Studies. Academic Press, Cambridge (2012)
de Amorim, R.C., Hennig, C.: Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf. Sci. 324, 126–145 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
De Almeida, F., Costa e Silva, E., Correia, A. (2020). Clustering of PP Nanocomposites Flow Curves Under Different Extrusion Conditions. In: Madureira, A., Abraham, A., Gandhi, N., Varela, M. (eds) Hybrid Intelligent Systems. HIS 2018. Advances in Intelligent Systems and Computing, vol 923. Springer, Cham. https://doi.org/10.1007/978-3-030-14347-3_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-14347-3_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14346-6
Online ISBN: 978-3-030-14347-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)