Clustering of PP Nanocomposites Flow Curves Under Different Extrusion Conditions | SpringerLink
Skip to main content

Clustering of PP Nanocomposites Flow Curves Under Different Extrusion Conditions

  • Conference paper
  • First Online:
Hybrid Intelligent Systems (HIS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 923))

Included in the following conference series:

  • 1393 Accesses

Abstract

For assessing the structural features of organoclay C15A dispersions in PP/PP-g-MA melts under different processing conditions along the screws of Twin Screw Extruder, in this work four different clustering algorithms are considered. The best algorithm and number of clusters is selected using three internal validation measures: connectedness, Dunn’s index and silhouette width. The results show that hierarchical clustering is the algorithm that yield better results and two is the best number of clusters. Two clusters are well identified L/D = 9.5 and 32.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    With Euclidean distance and Ward method.

References

  1. Gu, F., Hall, P., Miles, N.J.: Development of composites based on recycled polypropylene for injection moulding automobile parts using hierarchical clustering analysis and principal component estimate. J. Clean. Prod. 137, 632–643 (2016)

    Article  Google Scholar 

  2. Mohan, N., Senthil, P., Vinodh, S., Jayanth, N.: A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual. Phys. Prototyp. 12(1), 47–59 (2017)

    Article  Google Scholar 

  3. Mochane, M.J., Mokhena, T.C., Mokhothu, T.H., Mtibe, A., Sadiku, E.R., Ray, S.S.: The importance of nanostructured materials for energy storage/conversion. In: Handbook of Nanomaterials for Industrial Applications, pp. 768–792 (2018)

    Google Scholar 

  4. Gonçalves, J., Lima, P., Krause, B., Potschke, P., Lafont, U., Gomes, J.R., Abreu, C.S., Paiva, M.C., Covas, J.A.: Electrically conductive polyetheretherketone nanocomposite filaments: from production to fused deposition modeling. Polymers 10(8), 925 (2018)

    Article  Google Scholar 

  5. Dong, Y., Pramanik, A., Liu, D.I., Umer, R.: Manufacturing, characterisation and properties of advanced nanocomposites. J. Compos. Sci. 2, 46 (2018)

    Article  Google Scholar 

  6. Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z.: Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 35, 73–79 (2014)

    Article  Google Scholar 

  7. Normand, G., Mija, A., Pagnotta, S., Peuvrel-Disdier, E., Vergnes, B.: Preparation of polypropylene nanocomposites by melt-mixing: comparison between three organoclays. J. Appl. Polym. Sci. 134(28), 45053 (2017)

    Article  Google Scholar 

  8. Cho, S., Hong, J.S., Lee, S.J., Ahn, K.H., Covas, J.A., Maia, J.M.: Morphology and rheology of polypropylene/polystyrene/clay nanocomposites in batch and continuous melt mixing processes. Macromol. Mater. Eng. 296(3–4), 341–348 (2011)

    Article  Google Scholar 

  9. Dennis, H., Hunter, D.L., Chang, D., Kim, S., White, J.L., Cho, J.W., Paul, D.R.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23), 9513–9522 (2001)

    Article  Google Scholar 

  10. Domenech, T., Peuvrel-Disdier, E., Vergnes, B.: The importance of specific mechanical energy during twin screw extrusion of organoclay based polypropylene nanocomposites. Compos. Sci. Technol. 75, 7–14 (2013)

    Article  Google Scholar 

  11. Vergnes, B., Berzin, F.: Modeling of reactive systems in twin-screw extrusion: challenges and applications. C. R. Chim. 9(11–12), 1409–1418 (2006)

    Article  Google Scholar 

  12. Lertwimolnun, W., Vergnes, B.: Effect of processing conditions on the formation of polypropylene/organoclay nanocomposites in a twin screw extruder. Polym. Eng. Sci. 46(3), 314–323 (2006)

    Article  Google Scholar 

  13. Jung, H., White, J.L.: Investigation of melting phenomena in modular co-rotating twin screw extrusion. Int. Polym. Proc. 18(2), 127–132 (2003)

    Article  Google Scholar 

  14. Jung, H., White, J.L.: Modeling and simulation of the mechanisms of melting in a modular co-rotating twin screw extruder. Int. Polym. Proc. 23(3), 242–251 (2008)

    Article  Google Scholar 

  15. Malik, M., Kalyon, D.M., Golba Jr., J.C.: Simulation of co-rotating twin screw extrusion process subject to pressure-dependent wall slip at barrel and screw surfaces: 3D FEM Analysis for combinations of forward-and reverse-conveying screw elements. Int. Polym. Proc. 29(1), 51–62 (2014)

    Article  Google Scholar 

  16. Gurrala, P.K., Regalla, S.P.: Multi-objective optimisation of strength and volumetric shrinkage of FDM parts. Virtual Phys. Prototyp. 9(2), 127–138 (2014)

    Article  Google Scholar 

  17. Villmow, T., Potschke, P., Pegel, S., Häussler, L., Kretzschmar, B.: Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer 49(16), 3500–3509 (2008)

    Article  Google Scholar 

  18. De Almeida, M.F., Correia, A., Costa e Silva, E.: Layered clays in PP polymer dispersion: the effect of the processing conditions. J. Appl. Stat. 45(3), 558–567 (2018)

    Google Scholar 

  19. Cassagnau, P.: Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49(9), 2183–2196 (2008)

    Article  Google Scholar 

  20. Domenech, T., Zouari, R., Vergnes, B., Peuvrel-Disdier, E.: Formation of fractal-like structure in organoclay-based polypropylene nanocomposites. Macromolecules 47(10), 3417–3427 (2014)

    Article  Google Scholar 

  21. Brock, G., Pihur, V., Datta, S., Datta, S.: clValid, an R package for cluster validation. J. Stat. Softw. (2011)

    Google Scholar 

  22. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  23. Ledolter, J.: Data Mining and Business Analytics with R. Wiley, Hoboken (2013)

    Book  Google Scholar 

  24. Zhao, Y.: R and Data Mining: Examples and Case Studies. Academic Press, Cambridge (2012)

    Google Scholar 

  25. de Amorim, R.C., Hennig, C.: Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf. Sci. 324, 126–145 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Costa e Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Almeida, F., Costa e Silva, E., Correia, A. (2020). Clustering of PP Nanocomposites Flow Curves Under Different Extrusion Conditions. In: Madureira, A., Abraham, A., Gandhi, N., Varela, M. (eds) Hybrid Intelligent Systems. HIS 2018. Advances in Intelligent Systems and Computing, vol 923. Springer, Cham. https://doi.org/10.1007/978-3-030-14347-3_53

Download citation

Publish with us

Policies and ethics