Abstract
Codd’s rule of entity integrity stipulates the existence of a primary key over every database table. That is, uniqueness and absence of null markers are enforced on the columns of the primary key. Key sets stipulate a generalized entity integrity rule that can be achieved on data sets where primary keys do not exist. Indeed, a key set means that different pairs of rows can be distinguished by unique non-null values on potentially different elements of the key set. While primary keys are a core feature of SQL databases, key sets have not been researched much at all. Our goal is to motivate the actual use of key sets in database systems. The use of key sets depends at least on the ability to identify those key sets that are meaningful in a given application domain, and to efficiently validate such key sets during the lifetime of the database. For this purpose, we analyze for the first time the performance of validating key sets in SQL experimentally, and also conduct experiments that provide insight on the time and size required to generate Armstrong relations for the implication of unary key sets by arbitrary key sets. Armstrong relations provide computational support for identifying key sets that are meaningful for a given application domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bläsius, T., Friedrich, T., Schirneck, M.: The parameterized complexity of dependency detection in relational databases. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark. LIPIcs, vol. 63, pp. 6:1–6:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)
Brown, P., Link, S.: Probabilistic keys. IEEE Trans. Knowl. Data Eng. 29(3), 670–682 (2017)
Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)
Fan, W., Fan, Z., Tian, C., Dong, X.L.: Keys for graphs. PVLDB 8(12), 1590–1601 (2015)
Hannula, M., Link, S.: Automated reasoning about key sets. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 47–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_4
Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete relations. Comput. J. 54(7), 1166–1180 (2011)
Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment. ACM Trans. Database Syst. 34(2), 10 (2009)
Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 181–195. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_13
Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB J. 25(4), 571–596 (2016)
Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3), 352–374 (2010)
Levene, M., Loizou, G.: A generalisation of entity and referential integrity in relational databases. ITA 35(2), 113–127 (2001)
Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst. Sci. 17(2), 270–279 (1978)
Thalheim, B.: Dependencies in Relational Databases. Teubner, Stuttgart (1991)
Thalheim, B.: On semantic issues connected with keys in relational databases permitting null values. Elektronische Informationsverarbeitung und Kybernetik 25(1/2), 11–20 (1989)
Wei, Z., Link, S., Liu, J.: Contextual keys. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 266–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2_22
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Z., Zhang, H., Link, S. (2019). Simple SQL Validation of Generalized Entity Integrity. In: Chang, L., Gan, J., Cao, X. (eds) Databases Theory and Applications. ADC 2019. Lecture Notes in Computer Science(), vol 11393. Springer, Cham. https://doi.org/10.1007/978-3-030-12079-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-12079-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12078-8
Online ISBN: 978-3-030-12079-5
eBook Packages: Computer ScienceComputer Science (R0)