Abstract
The demand for software developers is growing fast, and programming skills are one of the most in-demand skills in the world. The primary goal of our Bachelor program is to provide students sustainable foundations for careers in software engineering. However, teaching and learning software development are challenging tasks.
We designed a new course concept to ensure that students apply software development knowledge in an industry-like project and are continuously engaged in further improving these skills. Our hypothesis was that by creating an interactive, collaborative and open learning environment we motivate students to extend their attitude from only learning for the exam, with short-term learning effects, to learning for a sustained competence growth, with self-motivated and long-lasting effects. With different students’ evaluations we were able to validate this hypothesis. In this paper we show the results of these evaluations with particular focus on the sustainability of the gained knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ally, M., Prieto-Blazquez, J.: What is the future of mobile learning in higher education? Revista de Unicersidad y Sociedad del Conocimiento (RUSC) 11(1), 142–151 (2014)
Alrasheedi, M., Capretz, L.F.: Determination of critical success factors affecting mobile learning: a meta-analysis approach. CoRR, abs/1801.04288 (2018)
Beecham, S., Clear, T., Noll, J.: Do we teach the right thing? A comparison of global software engineering education and practice. In: Proceedings of the 12th International Conference on Global Software Engineering, Buenos Aires, Argentina (2017)
Bloom, B.S.: Taxonomy of Educational Objectives. Cognitive Domain. Addison-Wesley Longman Ltd, Handbook I (1956)
Briz-Ponce, L., Juanes-Méndez, J.A.: Mobile devices and apps, characteristics and current potential on learning. J. Inf. Technol. Res. 8(4), 26–37 (2015)
Coffield, F.: Beyond Bulimic Learning: Improving Teaching in Further Education. Inst of Education Press (2014)
Esakia, A., McCrickard, D.S.: An adaptable model for teaching mobile app development. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–9 (2016)
Gannod, G., Burge, J., Helmick, M.: Using the inverted classroom to teach software engineering. In: 2008 ACM/IEEE 30th International Conference on Software Engineering, pp. 777–786 (2008)
Gary, K., Lindquist, T., Bansal, S., Ghazarian, A.: A project spine for software engineering curricular design. In: 2013 26th International Conference on Software Engineering Education and Training (CSEE T), pp. 299–303 (2013)
Ghezzi, C., Mandrioli, D.: The Challenges of Software Engineering Education, pp. 115–127. Springer, Heidelberg (2006)
Hernández, R.: Does continuous assessment in higher education support student learning? High. Educ. 64(4), 489–502 (2012)
Hsu, Y.-C., Ching, Y.-H.: Mobile app design for teaching and learning: educators’ experiences in an online graduate course. Int. Rev. Res. Open Distance Learn. 14(4), 117–139 (2013)
Jonsson, H.: Using flipped classroom, peer discussion, and just-in-time teaching to increase learning in a programming course. In: IEEE Frontiers in Education Conference (FIE), pp. 1–9 (2015)
Lage, M.J., Platt, G.J., Treglia, M.: Inverting the classroom: a gateway to creating an inclusive learning environment. J. Econ. Educ. 31(1), 30–43 (2000)
Motiwalla, L.F.: Mobile learning: a framework and evaluation. Comput. Educ. 49(3), 581–596 (2007)
Novak, G.M., Patterson, E.T., Gacrin, A.D., Christian, W.: Just-In-Time Teaching: Blending Active Learning with Web Technology. Prentice Hall (1999)
Pasamontes, M., Guzman, J.L., Rodriguez, F., Berenguel, M., Dormido, S.: Easy mobile device programming for educational purposes. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 3420–3425 (2005)
Pears, A. et al.: A survey of literature on the teaching of introductory programming. In: Working Group Reports on ITiCSE on Innovation and Technology in Computer Science Education, ITiCSE-WGR 2007, pp. 204–223. ACM, New York (2007)
Ramos, P.R.H., Penalvo, F.J.G., Gonzalez, M.A.C.: Towards mobile personal learning environments (mple) in higher education. In: Proceedings of the 2nd International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM), Salamanca, Spain, October 2014
Roberts, J.B.: Handbook of Mobile Learning, Chapter Accessibility in M-Learning: Ensuring Equal Access, pp. 427–435. Routledge, New York (2013)
Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: a review and discussion. Comput. Sci. Educ. 13(2), 137–172 (2003)
Rosell, B., Kumar, S., Shepherd, J.: Unleashing innovation through internal hackathons. In: IEEE Innovations in Technology Conference, pp. 1–8 (2014)
Sarrab, M., Elbasir, M., Alnaelic, S.: Towards a quality model of technical aspects for mobile learning services: an empirical investigation. Comput. Hum. Behav. 55(Part A):100–112 (2016)
Schefer-Wenzl, S., Miladinovic, I.: Game changing mobile learning based method mix for teaching software development. In: 16th World Conference on Mobile and Contextual Learning mLearn 2017, (2017)
Schefer-Wenzl, S., Miladinovic, I.: Mobile distance learning driven software development education. In: 8th International Conference on Distance Learning and Education ICDLE 2017, (2017)
Staubitz, T., Klement, H., Renz, J., Teusner, R., Meinel, C.: Towards practical programming exercises and automated assessment in massive open online courses. In: 2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pp. 23–30 (2015)
Tao, Y., Liu, G., Mottok, J., Hackenberg, R., Hagel, G.: Just-in-time-teaching experience in a software design pattern course. In: 2015 IEEE Global Engineering Education Conference (EDUCON), pp. 915–919 (2015)
Tillmann, N., et al.: The future of teaching programming is on mobile devices. In: Proceedings of the 17th ACM Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE 2012, pp. 156–161. ACM, New York (2012)
Topi, H., Tucker, A.: Computing Handbook. Information Systems and Information Technology, 3rd edn. CRCPress (2014)
Trainer, E.H., Kalyanasundaram, A., Chaihirunkarn, C., Herbsleb, J.D.: How to hackathon: socio-technical tradeoffs in brief, intensive collocation. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, CSCW 2016, pp. 1118–1130. ACM, New York (2016)
Venugopal-Wairagade G.: Study of a pedagogy adopted to generate interest in students taking a programming course. In: 2016 International Conference on Learning and Teaching in Computing and Engineering (LaTICE), pp. 141–146 (2016)
Zorek, J.A., Sprague, J.E., Popovich, N.G.: Bulimic learning. Am. J. Pharm. Educ. 74(8) (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Schefer-Wenzl, S., Miladinovic, I. (2020). Leveraging Collaborative Mobile Learning for Sustained Software Development Skills. In: Auer, M., Tsiatsos, T. (eds) The Challenges of the Digital Transformation in Education. ICL 2018. Advances in Intelligent Systems and Computing, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-030-11932-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-11932-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11931-7
Online ISBN: 978-3-030-11932-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)