Abstract
Business applications relying on processing of large amounts of heterogeneous data (Big Data) are considered to be key drivers of innovation in the digital economy. However, these applications also pose ethical issues that may undermine the credibility of data-driven businesses. In our contribution, we discuss ethical problems that are associated with Big Data such as: How are core values like autonomy, privacy, and solidarity affected in a Big Data world? Are some data a public good? Or: Are we obliged to divulge personal data to a certain degree in order to make the society more secure or more efficient? We answer those questions by first outlining the ethical topics that are discussed in the scientific literature and the lay media using a bibliometric approach. Second, referring to the results of expert interviews and workshops with practitioners, we identify core norms and values affected by Big Data applications—autonomy, equality, fairness, freedom, privacy, property-rights, solidarity, and transparency—and outline how they are exemplified in examples of Big Data consumer applications, for example, in terms of informational self-determination, non-discrimination, or free opinion formation. Based on use cases such as personalized advertising, individual pricing, or credit risk management we discuss the process of balancing such values in order to identify legitimate, questionable, and unacceptable Big Data applications from an ethics point of view. We close with recommendations on how practitioners working in applied data science can deal with ethical issues of Big Data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boyd, D., & Crawford, K. (2012). Critical questions for big data. Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication and Society, 15(5), 662–679.
Davis, K., & Patterson, D. (2012). Ethics of big data. Sebastopol, CA: O’Reilly Media.
Fiske, A. P., & Tetlock, P. E. (1997). Taboo trade-offs: Reactions to transactions that transgress the spheres of justice. Political Psychology, 18, 255–297.
Friedman, B., Kahn, P. H., Jr., & Borning, A. (2006). Value sensitive design and information systems. In P. Zhang & D. Galletta (Eds.), Human-computer interaction in management information systems: Foundations (pp. 348–372). New York: M.E. Sharpe.
Goodman, B., & Flaxman, S. (2016). EU regulations on algorithmic decision-making and a “right to explanation”. 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY. Available at http://arxiv.org/pdf/1606.08813v1.pdf
Graham, B. (2017). How banks could use an online ‘score’ to judge you. news.com.au, November 6 2017. Available at http://www.news.com.au/finance/business/banking/how-banks-could-use-an-online-score-to-judge-you/news-story/009ca6df681c5fc69f583c4feac718c2
Hauser, C., Blumer, H., Christen, M., Huppenbauer, M., Hilty, L., & Kaiser, T. (2017). Ethical challenges of big data. SATW Expertenbericht. Available at https://www.satw.ch/digitalisierung/detail/publication/ethische-herausforderung-von-big-data/
Helbing, D., Frey, B.S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., van den Hoven, J., Zicari, R.V., & Zwitter, A. (2015). Das Digitale Manifest. Digitale Demokratie statt Datendiktatur. Spektrum der Wissenschaft, 17.12.2015. Last accessed August 10, 2016, from http://www.spektrum.de/news/wie-algorithmen-und-big-data-unsere-zukunft-bestimmen/1375933
Informatics Europe & EUACM. (2018): When computers decide: European recommendations on machine-learned automated decision making. Last accessed February 28, 2018, from http://www.informatics-europe.org/component/phocadownload/category/10-reports.html?download=74:automated-decision-making-report
Lane, J., Stodden, V., Bender, S., & Nissenbaum, H. (Eds.). (2014). Privacy, big data, and the Public good: Frameworks for engagement. Cambridge: Cambridge University Press.
Mattioli, D. (2012, August 23). On Orbitz, Mac users steered to pricier hotels. The Wall Street Journal. Available at http://www.wsj.com/articles/SB10001424052702304458604577488822667325882
Mayer-Schönberger, V., & Cukier, K. (2013). Big data: Die revolution, die unser Leben verändern wird. München: Redline.
Metzler, M. (2016, October 23). Reiche bezahlen mehr. NZZ am Sonntag. Available at http://www.nzz.ch/nzzas/nzz-am-sonntag/personalisierte-preise-reiche-bezahlen-mehr-ld.123606
Nissenbaum, H. (2004). Privacy as contextual integrity. Washington Law Review, 79, 119–157.
Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Cambridge: Harvard University Press.
Tanner, C., & Medin, D. L. (2004). Protected values: No omission bias and no framing effects. Psychonomic Bulletin and Review, 11(1), 185–191.
Tetlock, P. E., Kristel, O. V., Elson, S. B., Green, M., & Lerner, J. S. (2000). The psychology of the unthinkable. Taboo trade-offs, forbidden base rates, and heretical counterfactuals. Journal of Personality and Social Psychology, (5), 853–870.
Van de Poel, I., & Royakkers, L. (2011). Ethics, technology, and engineering: An introduction. Hoboken: Wiley.
Van den Hoven, J. (1999). Privacy and the varieties of informational wrongdoing. Australian Journal of Professional and Applied Ethics, 1, 30–44.
Van den Hoven, J., Helbing, D., Pedreschi, D., Domingo-Ferrer, J., Gianotti, F., & Christen, M. (2012). FuturICT – The road towards ethical ICT. European Physical Journal – Special Topics, 214, 153–181.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Christen, M., Blumer, H., Hauser, C., Huppenbauer, M. (2019). The Ethics of Big Data Applications in the Consumer Sector. In: Braschler, M., Stadelmann, T., Stockinger, K. (eds) Applied Data Science. Springer, Cham. https://doi.org/10.1007/978-3-030-11821-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-11821-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11820-4
Online ISBN: 978-3-030-11821-1
eBook Packages: Computer ScienceComputer Science (R0)