Abstract
This paper develops an analytic-numerical approach for the description of moving fronts in two-dimensional nonlinear singularly perturbed parabolic equations. Asymptotic technique allows to reduce two-dimensional nonlinear reaction-diffusion equation to a series of more simple one-dimensional problems. This decomposition significantly decreases the complexity of numerical calculations and allows the effective use of parallel computing. Some numerical experiments are presented to demonstrate the main features of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Volkov, V., Nefedov, N., Antipov, E.: Asymptotic-numerical method for moving fronts in two-dimensional R-D-A problems. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) FDM 2014. LNCS, vol. 9045, pp. 408–416. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20239-6_46
Antipov, E.A., Volkov, V.T., Levashova, N.T., Nefedov, N.N.: Moving front solution of the reaction-diffusion problem. Model. Anal. Inf. Syst. 24(3), 259–279 (2017)
Volkov, V., Nefedov, N.: Asymptotic-numerical investigation of generation and motion of fronts in phase transition models. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 524–531. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-9_60
Volkov, V.T., Grachev, N.E., Nefedov, N.N., Nikolaev, A.N.: On the formation of sharp transition layers in two-dimensional reaction-diffusion models. J. Comp. Math. Math. Phys. 47(8), 1301–1309 (2007)
Fife, P.C., Hsiao, L.: The generation and propagation of internal layers. Nonlinear Anal. Theory Methods Appl. 12(1), 19–41 (1988)
Alshin, A.B., Alshina, E.A., Kalitkin, N.N., Koryagina, A.B.: Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems. Comp. Math. Math. Phys. 46(8), 1320–1340 (2006)
Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5(4), 329–330 (1963)
Kalitkin, N.N., Alshin, A.B., Alshina, E.A., Rogov, B.V.: Computations on Quasi-Uniform Grids, Fizmatlit, Moscow (2005). (in Russian)
Acknowledgements
This work is supported by RSCF, project No. 18-11-00042.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Volkov, V., Lukyanenko, D. (2019). Some Features of the Asymptotic-Numerical Method for the Moving Fronts Description in Two-Dimensional Reaction-Diffusion Problems. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_72
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_72
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)