Some Features of the Asymptotic-Numerical Method for the Moving Fronts Description in Two-Dimensional Reaction-Diffusion Problems | SpringerLink
Skip to main content

Some Features of the Asymptotic-Numerical Method for the Moving Fronts Description in Two-Dimensional Reaction-Diffusion Problems

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11386))

Included in the following conference series:

  • 1381 Accesses

Abstract

This paper develops an analytic-numerical approach for the description of moving fronts in two-dimensional nonlinear singularly perturbed parabolic equations. Asymptotic technique allows to reduce two-dimensional nonlinear reaction-diffusion equation to a series of more simple one-dimensional problems. This decomposition significantly decreases the complexity of numerical calculations and allows the effective use of parallel computing. Some numerical experiments are presented to demonstrate the main features of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Volkov, V., Nefedov, N., Antipov, E.: Asymptotic-numerical method for moving fronts in two-dimensional R-D-A problems. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) FDM 2014. LNCS, vol. 9045, pp. 408–416. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20239-6_46

    Chapter  Google Scholar 

  2. Antipov, E.A., Volkov, V.T., Levashova, N.T., Nefedov, N.N.: Moving front solution of the reaction-diffusion problem. Model. Anal. Inf. Syst. 24(3), 259–279 (2017)

    Article  Google Scholar 

  3. Volkov, V., Nefedov, N.: Asymptotic-numerical investigation of generation and motion of fronts in phase transition models. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 524–531. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-9_60

    Chapter  MATH  Google Scholar 

  4. Volkov, V.T., Grachev, N.E., Nefedov, N.N., Nikolaev, A.N.: On the formation of sharp transition layers in two-dimensional reaction-diffusion models. J. Comp. Math. Math. Phys. 47(8), 1301–1309 (2007)

    Article  MathSciNet  Google Scholar 

  5. Fife, P.C., Hsiao, L.: The generation and propagation of internal layers. Nonlinear Anal. Theory Methods Appl. 12(1), 19–41 (1988)

    Article  MathSciNet  Google Scholar 

  6. Alshin, A.B., Alshina, E.A., Kalitkin, N.N., Koryagina, A.B.: Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems. Comp. Math. Math. Phys. 46(8), 1320–1340 (2006)

    Article  MathSciNet  Google Scholar 

  7. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5(4), 329–330 (1963)

    Article  MathSciNet  Google Scholar 

  8. Kalitkin, N.N., Alshin, A.B., Alshina, E.A., Rogov, B.V.: Computations on Quasi-Uniform Grids, Fizmatlit, Moscow (2005). (in Russian)

    Google Scholar 

Download references

Acknowledgements

This work is supported by RSCF, project No. 18-11-00042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Volkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volkov, V., Lukyanenko, D. (2019). Some Features of the Asymptotic-Numerical Method for the Moving Fronts Description in Two-Dimensional Reaction-Diffusion Problems. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics