Blow-Up of Fronts in Burgers Equation with Nonlinear Amplification: Asymptotics and Numerical Diagnostics | SpringerLink
Skip to main content

Blow-Up of Fronts in Burgers Equation with Nonlinear Amplification: Asymptotics and Numerical Diagnostics

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11386))

Included in the following conference series:

  • 1395 Accesses

Abstract

This work develops a theory of asymptotic-numerical investigations of moving fronts in reaction-diffusion-advection models. We present the result of consideration of singularly perturbed parabolic Burgers-type equations with nonlinear forcing. Conditions of solution blow-up are formulated. Numerical algorithm which allows to recognise and describe the solutions blow-up is presented. In particular, in order to demonstrate the proposed method, we apply our approach to the problem with cubic forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitidieri, E., Pokhozhaev, S.I.: A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234(3), 1–384 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Levine, H.A.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \(pu_t=-au+\cal{F}(u)\). Arch. Rat. Mech. Anal. 51(5), 371–386 (1973)

    Article  Google Scholar 

  3. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-Up in Quasilinear Parabolic Qquations. Gruyter, Berlin (1995)

    Book  Google Scholar 

  4. Korpusov, M.O.: Blow-up of ion acoustic waves in a plasma. Mat. Sb. 202(1), 37–64 (2011)

    Article  MathSciNet  Google Scholar 

  5. Pelinovsky, D.E., Xu, C.: On numerical modelling and the blow-up behavoir of contact lines with a \(180^\circ \) contact angle. J. Eng. Math. 92, 31–44 (2015)

    Article  Google Scholar 

  6. Cangiani, A., Georgoulis, E.H., Kyza, I., Metcalfe, S.: Adaptivity and blow-up detection for nonlinear evolution problems. SIAM J. Sci. Comput. 38(6), 3833–3856 (2016)

    Article  MathSciNet  Google Scholar 

  7. Haynes, R., Turner, C.: A numerical and theoretical study of blow-up for a system of ordinary differential equations using the sundman transformation. Atlantic Electron. J. Math. 2(1), 1–13 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Berger, M., Kohn, R.V.: A rescaling algorithm for the numerical calcultaion of blowing-up solutions. Commun. Pure Appl. Math. 41(6), 841–863 (1988)

    Article  Google Scholar 

  9. Nefedov, N.N.: Asymptotic analysis of reaction-diffusion-advection problems: fronts with periodic motion and blow-up. IOP Conf. Ser.: J. Phys.: Conf. Ser. 811, 012008 (2017)

    Article  MathSciNet  Google Scholar 

  10. Nefedov, N.N.: Multiple scale reaction-diffusion-advection problems with moving fronts. J. Phys.: Conf. Ser. 727(1), 012011 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Al’shin, A.B., Kalitkin, N.N., Koryakin, P.V.: Diagnostics of singularities of exact solutions in computations with error control. Comput. Math. Math. Phys. 45(19), 1769–1779 (2005)

    MathSciNet  Google Scholar 

  12. Al’shin, A.B., Al’shina, E.A.: Numerical diagnosis of blow-up of solutions of pseudoparabolic equations. J. Math. Sci. 148(1), 143–162 (2008)

    Article  MathSciNet  Google Scholar 

  13. Korpusov, M.O., Lukyanenko, D.V., Panin, A.A., Yushkov, E.V.: Blow-up for one sobolev problem: theoretical approach and numerical analysis. J. Math. Anal. Appl. 442(2), 451–468 (2016)

    Article  MathSciNet  Google Scholar 

  14. Korpusov, M.O., Lukyanenko, D.V., Panin, A.A., Yushkov, E.V.: Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis. Math. Methods Appl. Sci. 40(7), 2336–2346 (2017)

    Article  MathSciNet  Google Scholar 

  15. Korpusov, M.O., Lukyanenko, D.V., Ovsyannikov, E.A., Panin, A.A.: Local solvability and decay of the solution of an equation with quadratic noncoercive nonlineatity. Bull. South Ural State University Ser.-Math. Modell. Program. Comput. Softw. 10(2), 107–123 (2017)

    MATH  Google Scholar 

  16. Korpusov, M.O., Lukyanenko, D.V.: Instantaneous blow-up versus local solvability for one problem of propagation of nonlinear waves in semiconductors. J. Math. Anal. Appl. 459(1), 159–181 (2018)

    Article  MathSciNet  Google Scholar 

  17. Korpusov, M.O., Lukyanenko, D.V., Panin, A.A., Shlyapugin, G.I.: On the blow-up phenomena for a one-dimensional equation of ion-sound waves in a plasma: analytical and numerical investigation. Math. Methods Appl. Sci. 41, 2906–2929 (2018). https://doi.org/10.1002/mma.4791

    Article  MathSciNet  MATH  Google Scholar 

  18. Korpusov, M.O., Lukyanenko, D.V., Panin, A.A., Yushkov, E.V.: On the blow-up of solutions of a full non-linear equation that describes ion-sound waves in plasma with non-coercive non-linearities, Izvestiya. Mathematics 82, 283 (2018). https://doi.org/10.1070/IM8579

    Article  MATH  Google Scholar 

  19. Hoffman, J., Johnson, C.: Blow up of incompressible euler solutions. BIT Numer. Math. 48(2), 285–307 (2008)

    Article  MathSciNet  Google Scholar 

  20. Hairer, E., Wanner, G.: Solving of Ordinary Differential Equations. Stiff and Differential-Algebraic Problems. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  21. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5(4), 329–330 (1963)

    Article  MathSciNet  Google Scholar 

  22. Al’shin, A.B., Al’shina, E.A., Kalitkin, N.N., Koryagina, A.B.: Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems. Comput. Math. Math. Phys. 46(8), 1320–1340 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation [grant number 18-11-00042].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Nefedov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukyanenko, D., Nefedov, N. (2019). Blow-Up of Fronts in Burgers Equation with Nonlinear Amplification: Asymptotics and Numerical Diagnostics. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics