Abstract
This work develops a theory of asymptotic-numerical investigations of moving fronts in reaction-diffusion-advection models. We present the result of consideration of singularly perturbed parabolic Burgers-type equations with nonlinear forcing. Conditions of solution blow-up are formulated. Numerical algorithm which allows to recognise and describe the solutions blow-up is presented. In particular, in order to demonstrate the proposed method, we apply our approach to the problem with cubic forcing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mitidieri, E., Pokhozhaev, S.I.: A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 234(3), 1–384 (2001)
Levine, H.A.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \(pu_t=-au+\cal{F}(u)\). Arch. Rat. Mech. Anal. 51(5), 371–386 (1973)
Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-Up in Quasilinear Parabolic Qquations. Gruyter, Berlin (1995)
Korpusov, M.O.: Blow-up of ion acoustic waves in a plasma. Mat. Sb. 202(1), 37–64 (2011)
Pelinovsky, D.E., Xu, C.: On numerical modelling and the blow-up behavoir of contact lines with a \(180^\circ \) contact angle. J. Eng. Math. 92, 31–44 (2015)
Cangiani, A., Georgoulis, E.H., Kyza, I., Metcalfe, S.: Adaptivity and blow-up detection for nonlinear evolution problems. SIAM J. Sci. Comput. 38(6), 3833–3856 (2016)
Haynes, R., Turner, C.: A numerical and theoretical study of blow-up for a system of ordinary differential equations using the sundman transformation. Atlantic Electron. J. Math. 2(1), 1–13 (2007)
Berger, M., Kohn, R.V.: A rescaling algorithm for the numerical calcultaion of blowing-up solutions. Commun. Pure Appl. Math. 41(6), 841–863 (1988)
Nefedov, N.N.: Asymptotic analysis of reaction-diffusion-advection problems: fronts with periodic motion and blow-up. IOP Conf. Ser.: J. Phys.: Conf. Ser. 811, 012008 (2017)
Nefedov, N.N.: Multiple scale reaction-diffusion-advection problems with moving fronts. J. Phys.: Conf. Ser. 727(1), 012011 (2016)
Al’shin, A.B., Kalitkin, N.N., Koryakin, P.V.: Diagnostics of singularities of exact solutions in computations with error control. Comput. Math. Math. Phys. 45(19), 1769–1779 (2005)
Al’shin, A.B., Al’shina, E.A.: Numerical diagnosis of blow-up of solutions of pseudoparabolic equations. J. Math. Sci. 148(1), 143–162 (2008)
Korpusov, M.O., Lukyanenko, D.V., Panin, A.A., Yushkov, E.V.: Blow-up for one sobolev problem: theoretical approach and numerical analysis. J. Math. Anal. Appl. 442(2), 451–468 (2016)
Korpusov, M.O., Lukyanenko, D.V., Panin, A.A., Yushkov, E.V.: Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis. Math. Methods Appl. Sci. 40(7), 2336–2346 (2017)
Korpusov, M.O., Lukyanenko, D.V., Ovsyannikov, E.A., Panin, A.A.: Local solvability and decay of the solution of an equation with quadratic noncoercive nonlineatity. Bull. South Ural State University Ser.-Math. Modell. Program. Comput. Softw. 10(2), 107–123 (2017)
Korpusov, M.O., Lukyanenko, D.V.: Instantaneous blow-up versus local solvability for one problem of propagation of nonlinear waves in semiconductors. J. Math. Anal. Appl. 459(1), 159–181 (2018)
Korpusov, M.O., Lukyanenko, D.V., Panin, A.A., Shlyapugin, G.I.: On the blow-up phenomena for a one-dimensional equation of ion-sound waves in a plasma: analytical and numerical investigation. Math. Methods Appl. Sci. 41, 2906–2929 (2018). https://doi.org/10.1002/mma.4791
Korpusov, M.O., Lukyanenko, D.V., Panin, A.A., Yushkov, E.V.: On the blow-up of solutions of a full non-linear equation that describes ion-sound waves in plasma with non-coercive non-linearities, Izvestiya. Mathematics 82, 283 (2018). https://doi.org/10.1070/IM8579
Hoffman, J., Johnson, C.: Blow up of incompressible euler solutions. BIT Numer. Math. 48(2), 285–307 (2008)
Hairer, E., Wanner, G.: Solving of Ordinary Differential Equations. Stiff and Differential-Algebraic Problems. Springer, Heidelberg (2002)
Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5(4), 329–330 (1963)
Al’shin, A.B., Al’shina, E.A., Kalitkin, N.N., Koryagina, A.B.: Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems. Comput. Math. Math. Phys. 46(8), 1320–1340 (2006)
Acknowledgements
The work was supported by the Russian Science Foundation [grant number 18-11-00042].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Lukyanenko, D., Nefedov, N. (2019). Blow-Up of Fronts in Burgers Equation with Nonlinear Amplification: Asymptotics and Numerical Diagnostics. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)