Abstract
Coupled Physics Electrical Conductivity Imaging is a group of new imaging modalities in which the electrical conductivity is recovered from the interior data. In this talk the inverse conductivity problem of Current Density Impedance Imaging (CDII) is considered. The variational approach is applied to solve this problem, and the corresponding weighted least gradient problems are analyzed for the Dirichlet and Robin boundary conditions. Three iterative algorithms for constructing the minimizing sequences for the weighted gradient functionals are presented. Their computational effectiveness is demonstrated in numerical experiments. The presentation is based on some results of a long-term project that has been pursued in collaboration with A. Nachman (University of Toronto, Canada) and A. Tamasan (University of Central Florida, USA).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Jerrard, R.L., Moradifam, A., Nachman, A.: Existence and uniqueness of minimizers of general least gradient problems. J. Reine Angew. Math. 734, 71–97 (2018)
Montalto, C., Stefanov, P.: Stability of coupled physics inverse problems with one internal measurement. Inverse Prob. 29(12), 125004 (2013)
Montalto, C., Tamasan, A.: Stability in conductivity imaging from partial measurements of one interior current. Inverse Prob. Imaging 11(2), 339–353 (2017)
Moradifam, A., Nachman, A., Timonov, A.: A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data. Inverse Prob. 28, 084003 (2012)
Moradifam, A., Nachman, A., Tamasan, A.: Uniqueness of minimizers of weighted least gradient problems arising in conductivity imaging. arXiv:1404.05992 (2017)
Nachman, A., Tamasan, A., Timonov, A.: Conductivity imaging with a single measurement of boundary and interior data. Inverse Prob. 23, 2551–2563 (2007)
Nachman, A., Tamasan, A., Timonov, A.: Recovering the conductivity from a single measurement of interior data. Inverse Prob. 25, 035014 (2009)
Nachman, A., Tamasan, A., Timonov, A.: Reconstruction of planar conductivities in subdomains from incomplete data. SIAM J. Appl. Math. 70(8), 3342–3362 (2010)
Nachman, A., Tamasan, A., Timonov, A.: Current density impedance imaging. Contemp. Math. AMS 559, 1335–1351 (2011)
Nachman, A., Tamasan, A., Veras, J.: A weighted minimum gradient problem with complete electrode model boundary conditions for conductivity imaging. SIAM J. Appl. Math. 76(4), 1321–1343 (2016)
Nashed, Z., Tamasan, A.: Structural stability in a minimization problem and applications to conductivity imaging. Inverse Prob. Imaging 5, 219–236 (2010)
Nieminen, J.O., Zevenhoven, K.C.J., Vesanen, P.T., et al.: Current density imaging using ultra low field MRI with adiabatic pulses. Magn. Reson. Imaging 32, 54–59 (2014)
Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 54(1), 1023–1040 (1992)
Tamasan, A. and Timonov, A.: A regularized weighted least gradient problem for conductivity imaging. arXiv:1804.00724 (2018)
Tamasan, A., Timonov, A.: Coupled physics electrical conductivity imaging. Eurasian J. Math. Comput. Appl. 2(2), 5–29 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Timonov, A. (2019). Iterative Algorithms for Coupled Physics Electrical Conductivity Imaging. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_63
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)