Abstract
In the present work, a Dirichlet problem is studied for the eikonal equation. A nonlinear boundary value problem formulated here can be treated as the limit of the diffusion–reaction problem with a diffusion parameter tending to zero. For numerical solving the singularly perturbed diffusion–reaction problem, monotone approximations are used. Predictions for a 3D model problem are presented to demonstrate possibilities of the developed numerical algorithm. The standard piecewise-linear finite-element approximation is employed to constructed discretization in space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belyaev, A.G., Fayolle, P.A.: On variational and PDE-based distance function approximations. In: Computer Graphics Forum, vol. 34, pp. 104–118. Wiley Online Library (2015)
Bhattacharya, T., DiBenedetto, E., Manfredi, J.: Limits as \(p \rightarrow \infty \) of \(\triangle _p u_p = f\) and related extremal problems. Rend. Sem. Mat. Univ. Polytec. Torino 47, 15–68 (1989)
Bitzadze, A.V.: Some Classes of Partial Differential Equations. Nauka, Moscow (1981). (in Russian)
Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (2005)
Cai, Q., Kollmannsberger, S., Sala-Lardies, E., Huerta, A., Rank, E.: On the natural stabilization of convection dominated problems using high order Bubnov-Galerkin finite elements. Comput. Math. Appl. 66(12), 2545–2558 (2014)
Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2(1), 17–31 (1973)
Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32(5), 152 (2013)
Fu, Z., Jeong, W.K., Pan, Y., Kirby, R.M., Whitaker, R.T.: A fast iterative method for solving the eikonal equation on triangulated surfaces. SIAM J. Sci. Comput. 33(5), 2468–2488 (2011)
Fu, Z., Kirby, R.M., Whitaker, R.T.: A fast iterative method for solving the eikonal equation on tetrahedral domains. SIAM J. Sci. Comput. 35(5), C473–C494 (2013)
Gilles, A., Pierre, K.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/978-0-387-44588-5
Gómez, J.V., Alvarez, D., Garrido, S., Moreno, L.: Fast methods for eikonal equations: an experimental survey. arXiv preprint arXiv:1506.03771 (2015)
Gurumoorthy, K.S., Rangarajan, A.: A Schrödinger equation for the fast computation of approximate euclidean distance functions. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 100–111. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02256-2_9
Jeong, W.K., Whitaker, R.T.: A fast iterative method for eikonal equations. SIAM J. Sci. Comput. 30(5), 2512–2534 (2008)
Kružkov, S.N.: Generalized solutions of the Hamilton-Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions. Sb.: Math. 27(3), 406–446 (1975)
Letniowski, F.W.: Three-dimensional Delaunay triangulations for finite element approximations to a second-order diffusion operator. SIAM J. Sci. Stat. Comput. 13(3), 765–770 (1992)
Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-5282-5
Roos, H., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems. Springer Series in Computational Mathematics, vol. 24. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-34467-4
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics. Springer, Berlin (2006). https://doi.org/10.1007/978-3-662-03359-3
Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)
Tsitsiklis, J.: Fast marching methods. IEEE Trans. Autom. Control 40, 1528–1538 (1995)
Acknowledgements
Petr Vabishchevich gratefully acknowledges support from the the Russian Federation Government (# 14.Y26.31.0013).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Churbanov, A.G., Vabishchevich, P.N. (2019). Numerical Solving a Boundary Value Problem for the Eikonal Equation. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)