Numerical Solving a Boundary Value Problem for the Eikonal Equation | SpringerLink
Skip to main content

Numerical Solving a Boundary Value Problem for the Eikonal Equation

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11386))

Included in the following conference series:

  • 1456 Accesses

Abstract

In the present work, a Dirichlet problem is studied for the eikonal equation. A nonlinear boundary value problem formulated here can be treated as the limit of the diffusion–reaction problem with a diffusion parameter tending to zero. For numerical solving the singularly perturbed diffusion–reaction problem, monotone approximations are used. Predictions for a 3D model problem are presented to demonstrate possibilities of the developed numerical algorithm. The standard piecewise-linear finite-element approximation is employed to constructed discretization in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belyaev, A.G., Fayolle, P.A.: On variational and PDE-based distance function approximations. In: Computer Graphics Forum, vol. 34, pp. 104–118. Wiley Online Library (2015)

    Google Scholar 

  2. Bhattacharya, T., DiBenedetto, E., Manfredi, J.: Limits as \(p \rightarrow \infty \) of \(\triangle _p u_p = f\) and related extremal problems. Rend. Sem. Mat. Univ. Polytec. Torino 47, 15–68 (1989)

    Google Scholar 

  3. Bitzadze, A.V.: Some Classes of Partial Differential Equations. Nauka, Moscow (1981). (in Russian)

    Google Scholar 

  4. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  5. Cai, Q., Kollmannsberger, S., Sala-Lardies, E., Huerta, A., Rank, E.: On the natural stabilization of convection dominated problems using high order Bubnov-Galerkin finite elements. Comput. Math. Appl. 66(12), 2545–2558 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2(1), 17–31 (1973)

    Article  MathSciNet  Google Scholar 

  7. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32(5), 152 (2013)

    Article  Google Scholar 

  8. Fu, Z., Jeong, W.K., Pan, Y., Kirby, R.M., Whitaker, R.T.: A fast iterative method for solving the eikonal equation on triangulated surfaces. SIAM J. Sci. Comput. 33(5), 2468–2488 (2011)

    Article  MathSciNet  Google Scholar 

  9. Fu, Z., Kirby, R.M., Whitaker, R.T.: A fast iterative method for solving the eikonal equation on tetrahedral domains. SIAM J. Sci. Comput. 35(5), C473–C494 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gilles, A., Pierre, K.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/978-0-387-44588-5

    Book  MATH  Google Scholar 

  11. Gómez, J.V., Alvarez, D., Garrido, S., Moreno, L.: Fast methods for eikonal equations: an experimental survey. arXiv preprint arXiv:1506.03771 (2015)

  12. Gurumoorthy, K.S., Rangarajan, A.: A Schrödinger equation for the fast computation of approximate euclidean distance functions. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 100–111. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02256-2_9

    Chapter  Google Scholar 

  13. Jeong, W.K., Whitaker, R.T.: A fast iterative method for eikonal equations. SIAM J. Sci. Comput. 30(5), 2512–2534 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kružkov, S.N.: Generalized solutions of the Hamilton-Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions. Sb.: Math. 27(3), 406–446 (1975)

    MATH  Google Scholar 

  15. Letniowski, F.W.: Three-dimensional Delaunay triangulations for finite element approximations to a second-order diffusion operator. SIAM J. Sci. Stat. Comput. 13(3), 765–770 (1992)

    Article  MathSciNet  Google Scholar 

  16. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-5282-5

    Book  MATH  Google Scholar 

  17. Roos, H., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems. Springer Series in Computational Mathematics, vol. 24. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-34467-4

    Book  MATH  Google Scholar 

  18. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics. Springer, Berlin (2006). https://doi.org/10.1007/978-3-662-03359-3

    Book  MATH  Google Scholar 

  19. Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)

    Article  MathSciNet  Google Scholar 

  20. Tsitsiklis, J.: Fast marching methods. IEEE Trans. Autom. Control 40, 1528–1538 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

Petr Vabishchevich gratefully acknowledges support from the the Russian Federation Government (# 14.Y26.31.0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr N. Vabishchevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Churbanov, A.G., Vabishchevich, P.N. (2019). Numerical Solving a Boundary Value Problem for the Eikonal Equation. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics