Abstract
In this work, we design a family of new iterative methods with memory, using some known schemes without memory keeping or increasing its order of convergence. As starting point we use the Ostrowski-Chum bi-parametric family of methods without memory, to design a new bi-parametric family of methods with memory, increasing the original order of convergence without adding new functional evaluations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Steffensen, J.F.: Remarks on iteration. Skand. Aktuar Tidskr. 16, 64–72 (1933)
Adomian, G.: Solving Frontier Problem of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)
Babolian, E., Biazar, J., Vahidi, A.R.: Solution of a system of nonlinear equations by Adomian decomposition method. Appl. Math. Comput. 150, 847–854 (2004)
Abbasbandy, S.: Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 170, 648–656 (2005)
Cordero, A., Torregrosa, J.R.: Extended Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)
Artidiello, S., Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Two weighted eight-order classes of iterative root-finding methods. Int. J. Comput. Math. 92(9), 1790–1805 (2015)
Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Cambridge (2013)
Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P.: Solving nonlinear problems by Ostrowski-Chun type parametric families. Math. Chem. 53, 430–449 (2015)
Blanchard, P.: The dynamics of Newton’s method. In: Proceedings of Symposia Applied Mathematics, vol. 49, pp. 139–152 (1994)
Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)
Cordero, A., Gutiérrez, J.M., Magreñán, Á.A., Torregrosa, J.R.: Stability analysis of a parametric family of iterative methods for solving nonlinear models. Appl. Math. Comput. 285, 26–40 (2016)
Ostrowski, A.M.: Solution of Equations and System of Equations. Academic Press, Cambridge (1966)
Chun, C.: Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006)
Soleymani, F., Khattri, S.K.: Finding simple roots by seventh- and eighth-order derivative-free methods. Int. J. Math. Models Appl. Sci. 1, 45–52 (2012)
Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011, 12 (2011). Article ID 693787
Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)
Acknowledgments
This research was partially supported by Ministerio de Economia y Competitividad under grants MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and FONDOCYT, Dominican Republic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P. (2019). Bi-parametric Family of Methods with Memory Based of Ostrowski-Chun Method. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)