Bi-parametric Family of Methods with Memory Based of Ostrowski-Chun Method | SpringerLink
Skip to main content

Bi-parametric Family of Methods with Memory Based of Ostrowski-Chun Method

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Abstract

In this work, we design a family of new iterative methods with memory, using some known schemes without memory keeping or increasing its order of convergence. As starting point we use the Ostrowski-Chum bi-parametric family of methods without memory, to design a new bi-parametric family of methods with memory, increasing the original order of convergence without adding new functional evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Steffensen, J.F.: Remarks on iteration. Skand. Aktuar Tidskr. 16, 64–72 (1933)

    MATH  Google Scholar 

  2. Adomian, G.: Solving Frontier Problem of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)

    Book  Google Scholar 

  3. Babolian, E., Biazar, J., Vahidi, A.R.: Solution of a system of nonlinear equations by Adomian decomposition method. Appl. Math. Comput. 150, 847–854 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Abbasbandy, S.: Extended Newton’s method for a system of nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 170, 648–656 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Cordero, A., Torregrosa, J.R.: Extended Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Artidiello, S., Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Two weighted eight-order classes of iterative root-finding methods. Int. J. Comput. Math. 92(9), 1790–1805 (2015)

    Article  MathSciNet  Google Scholar 

  7. Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Cambridge (2013)

    Google Scholar 

  8. Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P.: Solving nonlinear problems by Ostrowski-Chun type parametric families. Math. Chem. 53, 430–449 (2015)

    Article  MathSciNet  Google Scholar 

  9. Blanchard, P.: The dynamics of Newton’s method. In: Proceedings of Symposia Applied Mathematics, vol. 49, pp. 139–152 (1994)

    Google Scholar 

  10. Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cordero, A., Gutiérrez, J.M., Magreñán, Á.A., Torregrosa, J.R.: Stability analysis of a parametric family of iterative methods for solving nonlinear models. Appl. Math. Comput. 285, 26–40 (2016)

    MathSciNet  Google Scholar 

  12. Ostrowski, A.M.: Solution of Equations and System of Equations. Academic Press, Cambridge (1966)

    MATH  Google Scholar 

  13. Chun, C.: Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006)

    Article  MathSciNet  Google Scholar 

  14. Soleymani, F., Khattri, S.K.: Finding simple roots by seventh- and eighth-order derivative-free methods. Int. J. Math. Models Appl. Sci. 1, 45–52 (2012)

    Google Scholar 

  15. Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011, 12 (2011). Article ID 693787

    Article  MathSciNet  Google Scholar 

  16. Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Ministerio de Economia y Competitividad under grants MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and FONDOCYT, Dominican Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. Vassileva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P. (2019). Bi-parametric Family of Methods with Memory Based of Ostrowski-Chun Method. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics