Abstract
Nonsmooth Riemannian optimization is still a scarcely explored subfield of optimization theory that concerns the general problem of minimizing (or maximizing) over a domain endowed with a manifold structure, a real-valued function that is not everywhere differentiable. The purpose of this paper is to illustrate, by means of nine concrete examples, that nonsmooth Riemannian optimization finds numerous applications in engineering and the sciences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
P.-A. Absil and K. A. Gallivan. Joint diagonalization on the oblique manifold for independent component analysis. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 5, pages V–945–V–948, 2006.
P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ, 2008.
Roy L. Adler, Jean-Pierre Dedieu, Joseph Y. Margulies, Marco Martens, and Mike Shub. Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal., 22(3):359–390, July 2002.
Orly Alter, Patrick O. Brown, and David Botstein. Singular value decomposition for genome-wide expression data processing and modeling. PNAS, 97(18):10101–10106, 2000.
Miroslav Bačák, Ronny Bergmann, Gabriele Steidl, and Andreas Weinmann. A second order nonsmooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput., 38(1):A567–A597, 2016.
E. Birgin, J. Martínez, and M. Raydan. Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000.
Pierre B. Borckmans and P.-A. Absil. Fast oriented bounding box computation using particle swarm optimization. In Proceedings of the 18th European Symposium on Artificial Neural Networks (ESANN), 2010.
Pierre B. Borckmans, Mariya Ishteva, and P.-A. Absil. A modified particle swarm optimization algorithm for the best low multilinear rank approximation of higher-order tensors. In Marco Dorigo et al., editor, Swarm Intelligence, volume 6234 of Lecture Notes in Computer Science, pages 13–23. Springer-Verlag, 2010.
Pierre B. Borckmans, S. Easter Selvan, Nicolas Boumal, and P.-A. Absil. A Riemannian subgradient algorithm for economic dispatch with valve-point effect. J. Comput. Applied. Math., 255:848–866, 2013.
Nicolas Boumal, Bamdev Mishra, P.-A. Absil, and Rodolphe Sepulchre. Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research, 15:1455–1459, 2014.
D. S. Broomhead and M. J. Kirby. Dimensionality reduction using secant-based projection methods: the induced dynamics in projected systems. Nonlinear Dynam., 41(1–3):47–67, 2005.
Léopold Cambier and P.-A. Absil. Robust low-rank matrix completion by Riemannian optimization. SIAM Journal on Scientific Computing, 38(5):S440–S460, 2016.
Chi Keung Chan. Minimum Bounding Boxes and Volume Decomposition of Cad Models. PhD thesis, University of Hong Kong (People’s Republic of China), 2003.
A. Chattopadhyay, S. E. Selvan, and U. Amato. A derivative-free Riemannian Powell’s method, minimizing Hartley-entropy-based ICA contrast. IEEE Transactions on Neural Networks and Learning Systems, PP(99):1–1, 2015.
Alexandre d’Aspremont, Laurent El Ghaoui, Michael I. Jordan, and Gert R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448, 2007.
Laurent Demanet and Paul Hand. Scaling law for recovering the sparsest element in a subspace. Information and Inference: A Journal of the IMA, 3(4):295–309, 2014.
G. Dirr, U. Helmke, and C. Lageman. Nonsmooth Riemannian optimization with applications to sphere packing and grasping. In Lagrangian and Hamiltonian methods for nonlinear control 2006, volume 366 of Lecture Notes in Control and Inform. Sci., pages 29–45. Springer, Berlin, 2007.
David L. Donoho and Jared Tanner. Sparse nonnegative solution of underdetermined linear equations by linear programming. PNAS, 102(27):9446–9451, 2005.
David W. Dreisigmeyer. Direct search algorithms over Riemannian manifolds. Optimization Online 2007-08-1742, December 2006.
David W. Dreisigmeyer. A quasi-isometric embedding algorithm, 2017.
C. Ericson. Real-Time Collision Detection. CRC Press, Inc., Boca Raton, FL, USA, 2004.
D. Gabay. Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl., 37(2):177–219, 1982.
Matthieu Genicot, Wen Huang, and Nickolay T. Trendafilov. Weakly correlated sparse components with nearly orthonormal loadings. In Geometric Science of Information, pages 484–490, 2015.
R. H. Gohary and T. N. Davidson. Noncoherent MIMO communication: Grassmannian constellations and efficient detection. IEEE Trans. Inform. Theory, 55(3):1176–1205, 2009.
Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.
S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical structure for rapid interference detection. In SIGGRAPH ’96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 171–180, New York, NY, 1996. ACM.
P. Grohs and S. Hosseini. Nonsmooth trust region algorithms for locally Lipschitz functions on Riemannian manifolds. IMA J. Numer. Anal., 36(3):1167–1192, 2016.
P. Grohs and S. Hosseini. ε-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds. Adv. Comput. Math., 42(2):333–360, 2016.
P. Grohs and M. Sprecher. Total variation regularization on Riemannian manifolds by iteratively reweighted minimization. Inf. Inference, 5(4):353–378, 2016.
S. Hosseini, W. Huang, and R. Yousefpour. Line search algorithms for locally Lipschitz functions on Riemannian manifolds. November 2016. INS Preprint No. 1626.
S. Hosseini and A. Uschmajew. A Riemannian gradient sampling algorithm for nonsmooth optimization on manifolds. SIAM J. Optim., 27(1):173–189, 2017.
Wen Huang. Optimization Algorithms on Riemannian Manifolds with Applications. PhD thesis, Department of Mathematics, Florida State University, November 2013.
Wen Huang, P.-A. Absil, and K. A. Gallivan. Intrinsic representation of tangent vectors and vector transports on matrix manifolds. Numerische Mathematik, 136(2):523–543, Jun 2017.
Wen Huang, P.-A. Absil, K. A. Gallivan, and Paul Hand. ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds. Technical Report FSU16-14, Florida State University, 2016.
Wen Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi-Newton methods for Riemannian optimization. SIAM J. Optim., 25(3):1660–1685, 2015.
V. V. Ivanov. The theory of approximate methods and their application to the numerical solution of singular integral equations. Noordhoff International Publishing, Schuttersveld 9, P. O. Box 26, Leyden, The Netherlands, 1976.
Ian T Jolliffe, Nickolay T Trendafilov, and Mudassir Uddin. A modified principal component technique based on the lasso. Journal of Computational and Graphical Statistics, 12(3):531–547, 2003.
M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on the cone of positive semidefinite matrices. SIAM J. Optim, 20(5):2327–2351, 2010.
Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power method for sparse principal component analysis. J. Mach. Learn. Res., 11:517–553, 2010.
Martin Kleinsteuber and Hao Shen. Intrinsic Newton’s method on oblique manifolds for overdetermined blind source separation. In Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS, pages 2139–2143, 2010.
Artiom Kovnatsky, Klaus Glashoff, and Michael M. Bronstein. MADMM: A generic algorithm for non-smooth optimization on manifolds. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part V, pages 680–696. Springer International Publishing, Cham, 2016.
C. Lageman and U. Helmke. Optimization methods for the sphere packing problem on Grassmannians. In Taming heterogeneity and complexity of embedded control, pages 393–408. ISTE, London, 2007.
Christian Lageman. Convergence of gradient-like dynamical systems and optimization algorithms. PhD thesis, Julius-Maximilians-Universität Würzburg, 2007.
Adrian S. Lewis and Michael L. Overton. Nonsmooth optimization via quasi-Newton methods. Mathematical Programming, 141(1):135–163, 2013.
V. Morozov. Methods for Solving Incorrectly Posed Problems. Springer-Verlag, 1984.
Karl Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(11):559–572, 1901.
Q. Qu, J. Sun, and J. Wright. Finding a sparse vector in a subspace: linear sparsity using alternating directions. IEEE Trans. Inform. Theory, 62(10):5855–5880, 2016.
Wolfgang Ring and Benedikt Wirth. Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim., 22(2):596–627, 2012.
L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys. D, 60(1–4):259–268, 1992. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991).
Hiroyuki Sato. A Dai-Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions. Computational Optimization and Applications, 64(2):101–118, 2016.
P. J. Schneider and D. Eberly. Geometric Tools for Computer Graphics. Elsevier Science Inc., New York, NY, USA, 2002.
S. Easter Selvan, Pierre B. Borckmans, A. Chattopadhyay, and P.-A. Absil. Spherical mesh adaptive direct search for separating quasi-uncorrelated sources by range-based independent component analysis. Neural Comput., 25(9):2486–2522, 2013.
S. Easter Selvan, S. Thomas George, and R. Balakrishnan. Range-based ICA using a nonsmooth quasi-Newton optimizer for electroencephalographic source localization in focal epilepsy. Neural Computation, 27(3):628–671, 2015.
Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58(1):267–288, 1996.
A. N. Tikhonov and V. Y. Arsenin. Solutions of ill posed problems. V. H. Winston and Sons, 1977.
James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation. Journal of Machine Learning Research, 17(137):1–5, 2016.
Nickolay T. Trendafilov. From simple structure to sparse components: a review. Computational Statistics, 29(3):431–454, Jun 2014.
C. Udriste. Convex functions and optimization methods on Riemannian manifolds, volume 297. Kluwer Academic Publishers Group, Dordrecht, 1994.
F. Vrins, J. A. Lee, and M. Verleysen. A minimum-range approach to blind extraction of bounded sources. IEEE Transactions on Neural Networks, 18(3):809–822, May 2007.
D.C. Walters and G.B. Sheble. Genetic algorithm solution of economic dispatch with valve point loading. Power Systems, IEEE Transactions on, 8(3):1325–1332, Aug 1993.
Ke Wei, Jian-Feng Cai, Tony F. Chan, and Shingyu Leung. Guarantees of Riemannian optimization for low rank matrix recovery. SIAM Journal on Matrix Analysis and Applications, 37(3):1198–1222, 2016.
Allen J. Wood, Bruce F. Wollenberg, and Gerald B. Sheblé. Power Generation Operation and Control. John Wiley & Sons, Hoboken, New Jersey, third edition, 2014.
L. Zheng and D. N. C. Tse. Communication on the Grassmann manifold: a geometric approach to the noncoherent multiple-antenna channel. IEEE Trans. Inform. Theory, 48(2):359–383, 2002.
Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2):265–286, 2006.
Acknowledgements
This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office. This work was supported by the Belgian FNRS through grant FRFC 2.4585.12.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Absil, PA., Hosseini, S. (2019). A Collection of Nonsmooth Riemannian Optimization Problems. In: Hosseini, S., Mordukhovich, B., Uschmajew, A. (eds) Nonsmooth Optimization and Its Applications. International Series of Numerical Mathematics, vol 170. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-11370-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-11370-4_1
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-030-11369-8
Online ISBN: 978-3-030-11370-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)